Planung und Installation
Lüftung
Planung und Installation

Nachdruck oder Vervielfältigung, auch auszugsweise, nur mit unserer Genehmigung erlaubt.

STIEBEL ELTRON GmbH & Co. KG, 37603 Holzminden

Rechtshinweis

Technische Angaben

Inhaltsverzeichnis
Planungshandbuch Lüftung

Einleitung 6
STIEBEL ELTRON steckt voller Energie 6

Planung 8
Lüftung 8
Grundlagen 9
Lüftungskonzept 10
Kombination weiterer Haustechnikfunktionen 11
Grundlagen 12
Luftmengenberechnung 15
Systemauswahl im Neubau 20
Systemauswahl im Altbau 21
LVS infloor 22
LVE onfloor 34
LVE mit Etagenverteilern 46
LWF Wickelfalzrohrsystem 56
Luftauslässe 62
Schall 64
Feuerstättenbetrieb 65
Lüftung 66
Zentrale Zu- und Abluft 66

Geräte und Funktionen 66
Lüftung und Trinkwassererwärmung 67
Abluft 67
Lüftung, Trinkwassererwärmung und Heizung 68
Zentrale Zu- und Abluft 68
Lüftung 69
Dezentrale Zu- und Abluft 69
Normgerechte Lüftung 70

Integralgeräte 71
Produktübersicht 72
Zentrale Luftführung 72
Planung 73
Integralgeräte mit zentraler Zuluft 73
Lüftung, Trinkwassererwärmung, Heizen und Kühlen 80
LWZ 5/8 CS Premium 80
Lüftung, Trinkwassererwärmung und Heizung 98
LWZ 5 S Plus 98
Lüftung, Trinkwassererwärmung und Heizung 112
LWZ 5/8 S Trend 112
Trinkwassererwärmung und Heizen 130
LWZ 5 S Smart 130
Integralgeräte Zubehör 144

Zentrale Zu- und Abluft 66

www.stiebel-eltron.de
Inhaltsverzeichnis
Planungshandbuch Lüftung

Lüftungsgeräte

Lüftung mit zentraler Zu- und Abluft und Wärmerückgewinnung
Produktübersicht
LWZ 180/280
LWZ 180/280 Zubehör
LWZ 70 E
LWZ 70 Zubehör
LWZ 100 plus Li/RE
LWZ 100 plus Li/RE Zubehör
LWZ 130 / Enthalpie
LWZ 130 / Enthalpie Zubehör

Lüftung mit dezentraler Zu- und Abluft und Wärmerückgewinnung
Produktübersicht
LWE 40
LWE 40 Zubehör
LA 50
LA 50 Zubehör
LA 60
Planungsbeispiel 1
Planungsbeispiel 2
Planungsbeispiel 4
LWA 100
LWA 100 Zubehör
LWA 252
LWA 252 Zubehör

Zubehör
Dezentrale Zuluftventile für Wandaufbau
Dezentrale Zuluftventile für Wand-/Deckeneinbau
Abluftventile für Wand-/Deckeneinbau
Lüftungsgitter
Fortluft-/Außenluftführungen über Dach
Wickeffalzrohr-System
Flexible Rohre aus Aluminium
Gedämmte Rohre
Schalldämpfer
Flexible Luftverteilsystem LVE
Flexible Luftverteilsystem LVE Fußbodenaustritte
Flexible Luftverteilsystem LVE Wand- und Deckenausstritte
Flexible Luftverteilsystem LVS
Flexible Luftverteilsystem LVS Luftverteiler
Montagezubehör
Komfortzubehör

Anhang
Anhang
Begriffe und Benennungen
Formelsammlung
Legende zu den Standardschaltungen

www.stiebel-eltron.de Planungshandbuch Lüftung | 5
Einleitung

STIEBEL ELTRON steckt voller Energie

STIEBEL ELTRON ist eine international ausgerichtete Unternehmensgruppe und gehört weltweit zu den Markt- und Technologieführern in den Bereichen „Haustechnik“ und „Erneuerbare Energien“. Seit über 90 Jahren sind technische Leistungsfähigkeit, Qualität, Innovation, Zuverlässigkeit und kundennahe Service bestimmende Faktoren des Erfolgs.

Mit fünf nationalen und internationalen Produktionsstätten, weltweit 24 Tochtergesellschaften sowie Vertriebsorganisationen und Vertretungen in über 120 Ländern ist STIEBEL ELTRON global aufgestellt. Rund 40 Prozent des Umsatzes entfallen auf das Ausland.

Aus Ideen entstehen bei uns Innovationen, die Märkte bewegen. Als ingenieurtechnisch getriebenes Unternehmen handeln wir lösungsorientiert und entwickeln exzellente Einzelprodukte zu wegweisenden Systemlösungen. Denn wir wollen Zukunft aktiv gestalten.

Seit jeher zeichnen sich unsere Produkte durch hohe Zuverlässigkeit, Qualität und Langlebigkeit aus. Seit 1924 entwickeln wir hocheffiziente elektrische Geräte. Mit unseren 3.000 Mitarbeitern setzen wir von der Produktentwicklung bis zur Fertigung konsequent auf unser eigenes Know-how.

Das Resultat ist ein Portfolio von über 2.000 Produkten in den Bereichen Warmwasser, Erneuerbare Energien, Klima und Raumheizung. Durch intelligente Kombination entstehen so über 30.000 Systemlösungen, die Ihr Zuhause schon jetzt auf die Anforderungen der Zukunft vorbereiten.

Einleitung
STIEBEL ELTRON steckt voller Energie

Strom – der Energieträger der Zukunft

In die Entwicklung von Lüftungsgeräten und Lüftungs-Integralsystem haben wir viel Zeit und Sorgfalt investiert. So ist eine zuverlässige und serienreife Technik entstanden, die höchsten Komfort gewährleistet.

Die Gründe

Menschen atmen, kochen, duschen und geben dabei Kohlendioxid, Gerüche, Wärme und Wasserdampf an die Raumluft ab. Bis zu acht Kilogramm Wasser pro Tag werden z. B. von einer durchschnittlichen dreiköpfigen Familie an die umgebende Raumluft abgegeben.

Um sowohl die Raumluftqualität einzuhalten als auch den Abtransport von Feuchtigkeit sicherzustellen, ist ein definierter Luftaustausch der Raumluft mit frischer Außenluft notwendig. Die Fensterlüftung ist dafür nicht geeignet und sie verschwenkt ein hohes Einsparpotenzial an Heizwärme. Nur eine kontrollierte Lüftungsanlage kann den Lüftungswärmebedarf ohne die Gefahr von Feuchtigkeitsschäden spürbar senken.

Mit unseren Systemen lassen sich heute die unterschiedlichsten Anforderungen im Bereich Wohnraumlüftung bequem und ökonomisch erfüllen.

Die richtige Kombination

Das Zubehör

Unsere Zubehörteile, vom einfachen Rohrbogen bis zum Benutzerfreundlichen Regelungssystem mit Internetanbindung, sind speziell auf unsere Lüftungssysteme ausgelegt und erfüllen höchste Qualitätsansprüche.

Die abgestimmten Baugruppen und Einzelteile gewährleisten einerseits eine unproblematische und besonders schnelle und kostengünstige Installation. Andererseits sind alle Zubehöre einander und mit unseren Lüftungsgeräten abgestimmt und tragen dadurch zur einwandfreien Funktion der Gesamtanlage bei.

Unser Lüftungsprogramm

– Effiziente, betriebssichere und hochintegrierte Lüftungssysteme
– Geräte, die aktuelle ästhetische Ansprüche erfüllen
– Lüftungsgeräte für den Neubau und die Renovierung
– Vernetzte Systeme mit Internet-Anbindung und Fernwartung
– Effektive Ausnutzung günstiger Tarife sowie des eigenen Solarstroms
Normen und Bestimmungen

Die hier aufgeführten Normen und Bestimmungen stellen die rechtliche Grundlage im Bereich der Bundesrepublik Deutschland zum Zeitpunkt der Drucklegung dar. Die Aufstellung erhebt nicht den Anspruch auf Vollständigkeit und Gültigkeit. Außerhalb Deutschlands sind die jeweiligen länderspezifischen Vorschriften und Richtlinien zu beachten.

Lüftung

DIN 18017-3
Lüftung von Bädern und Toiletten ohne Außenfenster mit Ventilatoren.

DIN 1946-6
Raumlufttechnik, Lüftung von Wohnungen.

DIN 4719

DIN EN 779
Partikel-Luftfilter für die allgemeine Raumlufttechnik - Anforderungen, Prüfung, Kennzeichnung.

DIN EN 13141
Lüftung von Gebäuden - Leistungsprüfungen von Bauteilen/Produkten für die Lüftung von Wohnungen

DIN EN 12102
Messung der Luftschalldämpfung - Bestimmung des Schallleistungspegels

VDI 3801
Betreiben von raumlufttechnischen Anlagen.

Sicherheit und Komfort

DIN 4109
Schallschutz im Hochbau - Anforderungen und Nachweise.

DIN VDE 0100
Errichtung von Starkstromanlagen mit Nennspannungen bis 1000 V.

TA Lärm 98
Technische Anleitung zum Schutz gegen Lärm.

VBG 20
Kälteanlagen.

VDI 2087
Bemessungsgrundlagen, Schalldämmung, Temperaturabfall, Wärmeerluste für Luftkanäle.

Energie und Umwelt

EEWärmeG
Gesetz zur Förderung erneuerbarer Energien im Wärmebereich.

EnEV
Verordnung über energiesparenden Wärmeschutz und energie-sparende Anlagentechnik bei Gebäuden.

DIN EN 12831
Heizungsanlagen in Gebäuden - Verfahren zur Berechnung der Norm-Heizlast.

DIN V 4108-6
Wärmeschutz und Energieeinsparung in Gebäuden - Berechnung des Jahresheizwärme- und des Jahresheizenergiebedarfs.

DIN 4108-7

DIN V 4701-10

DIN V 18599
Energetische Bewertung von Gebäuden - Berechnung des Nutz-, End- und Primärenergiebedarfs für Heizung, Kühlung, Lüftung, Trinkwarmwasser und Beleuchtung

Weitere Bestimmungen

Die jeweilige Landesbauordnung.

Hinweis

Beachten Sie alle nationalen und regionalen Vorschriften und Bestimmungen.

Leistungsdaten nach Norm

Erläuterung zur Ermittlung und Interpretation der angegebenen Leistungsdaten nach Norm:

Grundlagen

Bei der sachgerechten Planung einer Lüftungsanlage müssen viele Randbedingungen berücksichtigt und entsprechend eingeplant werden.

Das Rohrleitungssystem mit Zuluft- und Abluftventilen, Verteilerkästen, Schalldämpfern mit Anbau- und Befestigungsteilen, spielt hierbei eine maßgebliche Rolle.

Weitere wichtige Aspekte bei der Planung sind z. B. Schall- und hygienische Anforderungen an eine Lüftungsanlage.

Sowohl das Wissen über diese Zusammenhänge als auch die Umsetzung sind zwingend notwendig, um eine funktionsfähige und komfortable Wohnungslüftungsanlage planen zu können.

Planungsdienstleistung

Gern unterstützen wir Sie bei der Planung der Lüftungsanlage.

Anlagenplanung Schritt für Schritt

<table>
<thead>
<tr>
<th>Bedarfsermittlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lüftungskonzept erstellen nach DIN 1946-6</td>
</tr>
<tr>
<td>Heizlast berechnen nach DIN EN 12831</td>
</tr>
<tr>
<td>Trinkwarmwasserbedarf ermitteln</td>
</tr>
<tr>
<td>Solaranlagenplanung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gerät, Gerätevariante und Systemlösung festlegen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geräteaufstellung definieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Luftvolumenstromberechnung für Zu- und Abluft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art, Anzahl und Position der Ventile und Überströmöffnungen festlegen</td>
</tr>
<tr>
<td>Rohrleitungssystem, Querschnitte und Führung festlegen</td>
</tr>
<tr>
<td>Ventileinstellungen und Volumenströme definieren</td>
</tr>
</tbody>
</table>

| Materialliste erstellen |
Lüftungskonzept

Für die Be- und Entlüftung der Räume von Nutzungseinheiten stehen freie oder ventilatorgestützte Systeme zur Verfügung.

Die Auswahl eines Systems wird allgemein und durch speziell zu stellende Anforderungen bestimmt. Während allgemein zu stellende Anforderungen z. B. Vorgaben in Verordnungen oder Richtlinien sind, die von allen Lüftungssystemen einzuhalten sind, können speziell zu stellende Anforderungen auf eine bestimmte Nutzungseinheit bezogen werden.

Als allgemein zu stellende Anforderungen gelten z. B. die im Gebäude einzuhaltenden

- Brand- und schallschutztechnischen Bestimmungen,
- Forderungen an die Nutzung der Wohn- und Aufenthaltsräume (Behaglichkeit) oder
- Luftvolumenströme in besonderen Räumen.

Als spezielle (projektbezogene) Anforderungen gelten z. B.:

- Realisierung der Luftvolumenströme in besonderen Räumen und gegebenenfalls in Wohn- und Aufenthaltsräumen,
- Erhöhte Anforderungen an die Raumluftqualität (Hygiene),
- Erhöhte Anforderungen an die Energieeffizienz bzw.
- Erhöhte Anforderungen an den Schallschutz.

Erstellung eines Lüftungskonzeptes nach DIN 1946 - Teil 6

<table>
<thead>
<tr>
<th>Lüftungskonzept für Gebäude / Nutzungseinheiten</th>
<th>Daten Gebäude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fensterlose Räume? ja</td>
<td>Anzahl Geschosse/Gebäudehöhe, Windgebiet (windstark / windschwach), Wärmeschutz (hoch / niedrig), Gebäudedichtigkeit (n50 Messwert / Kategorie)</td>
</tr>
<tr>
<td>nein</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Daten Nutzungseinheit</td>
</tr>
<tr>
<td></td>
<td>Geometrie (beheizte Wohnfläche, mittlere Raumhöhe, mehrgeschossig oder eingeschossig), Höhe über Geländeoberkante, Installationsschacht</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bemessung Lüftung für fensterlose Räume nach DIN 18017-3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anforderungen Nutzungseinheit?</td>
</tr>
<tr>
<td></td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td>nein</td>
</tr>
<tr>
<td></td>
<td>Keine Bemessung für Nutzungseinheit</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notwendige lüftungstechnische Maßnahmen</td>
</tr>
<tr>
<td></td>
<td>Gesamt Außenluft-Volumenstrom, Feuchteschutz, Luftvolumenstrom durch Infiltration</td>
</tr>
<tr>
<td></td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td>nein</td>
</tr>
<tr>
<td></td>
<td>Lüftungstechnische Maßnahmen erforderlich</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anforderungen an Hygiene, Energie, Schallschutz?</td>
</tr>
<tr>
<td></td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td>nein</td>
</tr>
<tr>
<td></td>
<td>Festlegung lüftungstechnischer Maßnahmen</td>
</tr>
</tbody>
</table>

Keine lüftungstechnischen Maßnahmen erforderlich
Planung
Kombination weiterer Haustechnikfunktionen

Kombination weiterer Haustechnikfunktionen

Raumheizung

Sofern das Wohnungs-Lüftungssystem auch für die Beheizung des Objektes genutzt werden soll, muss zunächst die Norm-Heizlast des Gebäudes oder der Wohnung ermittelt werden. Dies erfolgt nach DIN EN 12831.

Als Norm-Heizlast eines Raumes/Gebäudes wird die Wärmeleistung bezeichnet, die dem Raum bzw. Gebäude bei Normaußentemperatur (Auslegungstemperatur) zugeführt werden muss, um die Norm-Innentemperaturen oder vereinbarten Raumtemperaturen erreichen zu können.

Die Norm-Heizlast setzt sich aus dem Wärmestrom durch Wärmeleitung über Umschließungsflächen (Transmission) und dem Wärmestrom für die Aufheizung eindringender Außenluft (Lüftungsheizlast) zusammen.

Das Ergebnis dieser Berechnung ist maßgebend für die Dimensionierung des Wärmepumpensystems und für eine zuverlässige Angebotsstellung notwendig. Sowohl das Über- als auch Unterdimensionieren einer Wärmepumpenanlage ist unwirtschaftlich, nachteilig für den Betrieb des Systems und schränkt mitunter die Betriebssicherheit der Anlage ein.

Die Berechnung kann bedingen, dass die zuerst getroffene Geräte- oder Systementscheidung revidiert werden muss.

Die Übertragung der Heizwärme in den Raum bzw. das Gebäude kann sowohl über statische Heizflächen (Fußboden-/Flächenheizung oder Radiatoren) als auch über die Zuluft (Lüftungsanlage) erfolgen. Letzteres ist nur möglich, wenn die zu übertragende Heizleistung mit dem für den hygienischen Mindestluftwechsel notwendigen Luftvolumenstrom an den Raum bzw. das Gebäude abgegeben werden kann. Dies muss gründlich geprüft werden. Es gelten folgende Richtwerte und Hinweise:

- Die Zuluftmenge nach DIN 1946-6 darf nicht erhöht werden.
- Pro 100 m³/h Zuluft sind ca. 1 kW Heizleistung übertragbar.
- Pro m² Wohnfläche sind ca. 10 W übertragbar.
- Die maximale Zulufttemperatur muss auf 52 °C begrenzt werden.
- Bei zentralem Luft-/Wasser Wärmeübertrager ist ein Pufferspeicher notwendig.
- Eine raumweise Regelung der Raumtemperatur ist nur eingeschränkt möglich.
- Für Nassräume sind häufig zusätzliche statische Heizflächen nötig.

Statische Heizflächen bieten entscheidende Vorteile gegenüber einer aktiven Lüftungsheizung und sind grundsätzlich zu empfehlen. Sie lassen sich im Vergleich besser regeln, gleichen Schwankungen aus, bilden einen Puffer bzw. nutzen Gebäudemassen als Puffer, übertragen die Heizwärme zum Teil über Strahlung und bieten letztendlich eine bessere Behaglichkeit.
Trinkwassererwärmung

Die Kenntnis des zu erwartenden Warmwasserbedarfs ist eine Grundvoraussetzung für die Auswahl des für den jeweiligen Einsatzfall geeigneten Gerätes und/oder des benötigten Speicher- volumens.

Die nachfolgenden Tabellen ermöglichen die Ermittlung des Warmwasserbedarfs für Einrichtungen im Haushalt, bezogen auf eine Warmwasser-Austrittstemperatur von 55 °C und eine Kaltwasser-Temperatur von 10 °C.

VDEW Messung

<table>
<thead>
<tr>
<th>Warmwassermenge</th>
<th>Spezifische Nutzwärme kWh/Tag x Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>L / 60 °C</td>
<td>L / 45 °C</td>
</tr>
<tr>
<td>20</td>
<td>1.2</td>
</tr>
</tbody>
</table>

VDI 2067, Blatt 12

<table>
<thead>
<tr>
<th>Bedarf</th>
<th>Warmwassermenge L / 60 °C</th>
<th>Spezifische Nutzwärme kWh/Tag x Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>L / 45 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niedrig</td>
<td>10 - 20</td>
<td>0.6 - 1.2</td>
</tr>
<tr>
<td>Mittel</td>
<td>20 - 40</td>
<td>1.2 - 2.4</td>
</tr>
<tr>
<td>Hoch</td>
<td>40 - 80</td>
<td>2.4 - 4.8</td>
</tr>
</tbody>
</table>

Das Blatt 12 der VDI 2067 umfasst die objektbezogene Berechnung des Energiebedarfs für die Trinkwassererwärmung. Es bietet Warmwasser-Nutzenergiebedarfe für Körperreinigung und -pflege sowie Reinigung und Pflege im Haushalt und dient damit als Grundlage für energiewirtschaftliche Vergleichsrechnungen.

Anwendungsbeispiele aus Bedarfsfällen

<table>
<thead>
<tr>
<th>Entnahmestelle</th>
<th>Menge</th>
<th>Temperatur °C</th>
<th>Speicherinhalt L / 55 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spüle</td>
<td>10 - 20</td>
<td>50</td>
<td>9 - 18</td>
</tr>
<tr>
<td>Badewanne</td>
<td>130 - 180</td>
<td>40</td>
<td>87 - 120</td>
</tr>
<tr>
<td>Dusche</td>
<td>30 - 50</td>
<td>37</td>
<td>18 - 30</td>
</tr>
<tr>
<td>Wellness Dusche</td>
<td>80 - 130</td>
<td>37</td>
<td>48 - 78</td>
</tr>
<tr>
<td>Waschtisch</td>
<td>10 - 15</td>
<td>37</td>
<td>6 - 9</td>
</tr>
<tr>
<td>Handwaschbecken</td>
<td>2 - 5</td>
<td>37</td>
<td>1 - 3</td>
</tr>
</tbody>
</table>
Gebäudekühlung

Sowohl bei zu tiefen als auch bei zu hohen Raumtemperaturen nimmt die Leistungsfähigkeit des Menschen stark ab. Komfortable Raumtemperaturen sind deshalb unabdingbar für das menschliche Wohlbefinden.

Kühlleistung Fußbodenheizung

<table>
<thead>
<tr>
<th>Bodenbelag</th>
<th>Fliesen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verlegeabstand</td>
<td>cm</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Raumtemperatur</td>
<td>°C</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Vorlauftemperatur</td>
<td>°C</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Rücklauftemperatur</td>
<td>°C</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Kühlleistung</td>
<td>W/m²</td>
</tr>
<tr>
<td>26</td>
<td>22</td>
</tr>
<tr>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

Heizleistung Fußbodenheizung

<table>
<thead>
<tr>
<th>Bodenbelag</th>
<th>Fliesen</th>
<th>Teppich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verlegeabstand</td>
<td>cm</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>Raumtemperatur</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorlauftemperatur</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rücklauftemperatur</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heizleistung</td>
<td>W/m²</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>55</td>
<td>40</td>
</tr>
<tr>
<td>50</td>
<td>45</td>
<td>37</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ein Wohnungslüftungsgerät ist nicht geeignet, um die Gebäudekühlung über den Zuluftvolumenstrom zu realisieren. Der Einsatz von statischen Kühlflächen und / oder Gebläsekonvektoren ist zu empfehlen.

Behaglichkeitsfeld (Leusden und Freymark)

![Behaglichkeitsfeld Diagramm](image-url)

X Raumlufttemperatur in °C
Y Relative Luftfeuchtigkeit in %
1 behaglich
2 noch behaglich
3 unbehaglich feucht
4 unbehaglich trocken

www.stiebel-eltron.de Planungshandbuch Lüftung | 13
Luftmengenberechnung

- Lüftung zum Feuchteschutz
- Reduzierte Lüftung
- Nennlüftung
- Intensivlüftung

Die Luftmengenberechnung erfolgt für die Betriebsstufe „Nennlüftung“.

Bestimmung des Gesamtvolumenstroms

Für die Ermittlung des erforderlichen Gesamtvolumenstroms ist zunächst der Maximalwert aus erforderlichem Volumenstrom nach Wohnfläche, Ablufträumen und planmäßiger Belegung mit Hilfe der nebenstehenden Tabellen zu bestimmen.

\[
q_{v,\text{ges}} = \max (q_{v,\text{Fläche}}; q_{v,\text{Abluft}}; q_{v,\text{Person}}) - q_{v,\text{Inf}}
\]

\[
q_{v,\text{ges}} \text{ Volumenstrom Nennlüftung}
\]
\[
q_{v,\text{Fläche}} \text{ Volumenstrom nach Wohnfläche}
\]
\[
q_{v,\text{Abluft}} \text{ Volumenstrom aus Summe der Ablufträume}
\]
\[
q_{v,\text{Person}} \text{ Volumenstrom nach Personenzahl}
\]
\[
q_{v,\text{Inf}} \text{ Volumenstrom durch Infiltration}
\]

Luftvolumenstrom durch Infiltration

Jede Gebäudehülle besitzt eine bestimmte Undichtheit, die bei Auftreten eines natürlich verursachten Differenzdruckes zur Infiltration (und auch Exfiltration) von Außenluft führt. Dieser Infiltrations-Volumenstrom lässt sich vereinfacht über das Gebäudevolumen mit Hilfe von Faktoren bestimmen.

\[
q_{v,\text{Inf}} = f_{\text{Inf}} \cdot V
\]

\[
q_{v,\text{Inf}} \text{ Volumenstrom durch Infiltration}
\]
\[
f_{\text{Inf}} \text{ Infiltrationsfaktor (Tabelle)}
\]
\[
V \text{ zu belüftendes Gebäudevolumen}
\]

Da durch die Infiltration ein permanenter, natürlicher Luftaustausch stattfindet, kann der durch das Lüftungsgerät zu erbringende Gesamtvolumenstrom um den Betrag des Infiltrationsvolumenstroms reduziert werden.
Planung
Luftmengenberechnung

Bestimmung der Zuluft-Volumenströme

Die Aufteilung des berechneten Gesamt-Volumenstromes auf die einzelnen Zulufträume erfolgt mit Hilfe von Zuluftfaktoren aus nebenstehender Tabelle. Dabei muss für jeden Raum der zugehörige Faktor durch die Summe aller für das Gebäude festgelegten Faktoren geteilt werden. Dieser Quotient entspricht dem Anteil am Gesamtvolumenstrom.

\[q_{v,Zu,Raum} = \left(\frac{f_{Zuluft,Raum}}{\sum f_{Zuluft}} \right) \cdot q_{v,ges} \]

Über die vorgegebenen Toleranzbereiche der einzelnen Faktoren können gebäudespezifische Besonderheiten berücksichtigt werden.

Überströmbereich

Bestimmung der Lüfterstufen

Ausgehend vom Gesamtvolumenstrom können die Volumenströme für die einzelnen Lüfterstufen berechnet werden.

<table>
<thead>
<tr>
<th>Lüftungsart</th>
<th>Formel für den Volumenstrom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lüftung zum Feuchteschutz (Neubau)</td>
<td>(q_{v,FL} = 0,3 \cdot q_{v,ges})</td>
</tr>
<tr>
<td>Reduzierte Lüftung</td>
<td>(q_{v,RL} = 0,7 \cdot q_{v,ges})</td>
</tr>
<tr>
<td>Nennlüftung</td>
<td>(q_{v,NL} = q_{v,ges})</td>
</tr>
<tr>
<td>Intensivlüftung</td>
<td>(q_{v,IL} = 1,3 \cdot q_{v,ges})</td>
</tr>
</tbody>
</table>

Die Intensivlüftung kann auch durch Nutzerunterstützung (Fensterlüftung) sichergestellt werden, muss also nicht zwingend aus- schließlich durch das Lüftungsgerät realisiert werden.

Zuluftfaktoren \(f_{Zuluft} \) nach DIN 1946 Teil 6

<table>
<thead>
<tr>
<th>Nutzungsart</th>
<th>Zuluftfaktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wohnen</td>
<td>3,0 (±0,5)</td>
</tr>
<tr>
<td>Essen</td>
<td>1,5 (±0,5)</td>
</tr>
<tr>
<td>Schlafen</td>
<td>2,0 (±1,0)</td>
</tr>
<tr>
<td>Kind</td>
<td>2,0 (±1,0)</td>
</tr>
<tr>
<td>Arbeiten</td>
<td>1,5 (±0,5)</td>
</tr>
<tr>
<td>Gäste</td>
<td>1,5 (±0,5)</td>
</tr>
</tbody>
</table>

Überströmöffnungen nach DIN 1946 Teil 6

<table>
<thead>
<tr>
<th>Luftmenge</th>
<th>(\text{cm}^2)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tür mit Dichtung</td>
<td>mm</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>14</td>
<td>17</td>
<td>20</td>
<td>22</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>Tür ohne Dichtung</td>
<td>cm²</td>
<td>0</td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
<td>125</td>
<td>150</td>
<td>175</td>
<td>200</td>
<td>225</td>
</tr>
</tbody>
</table>

Angaben nach DIN 1946, Teil 6

Das Kürzungsmaß gibt an, um wie viel Millimeter ein 89-cm-Türblatt gekürzt werden muss.
Beispiel Luftmengenberechnung

Im Folgenden soll anhand eines Beispielgebäudes die Vorgehensweise bei der Berechnung des Gesamtvolumenstromes sowie der Zu- und Abluftmengen für die einzelnen Räume aufgezeigt werden.

Gebäudedaten:
- Freistehendes Einfamilienhaus
- Neubau, windschwache Lage
- Belüftete Wohnfläche: 135 m²
- Belegung mit 3 Personen

Erdgeschoss

1. Wohnen/Essen Zuluft
2. Küche Abluft
3. Bad/Dusche Abluft
4. WC Abluft
5. Schlafen/Eltern Zuluft
6. Kind Zuluft
7. Gast Zuluft
8. Abstellraum durchströmt
9. Flur/Treppe/Windfang durchströmt
10. Diele Abluft
11. Technik/Heizung Abluft
12. Garage unbelüftet
13. Dachboden unbelüftet
14. Dachdurchführung Fortluft
15. Lüftungsgerät

Zur Ermittlung des Gesamtvolumenstromes sind zunächst die erforderlichen Luftmengen nach Wohnfläche, Ablufträumen und Personenzahl zu bestimmen.

Volumenstrom nach Wohnfläche

\[A_{ges} = 135 \text{ m}^2 \]

\[q_{v,Fläche} = -0.001 \times (135 \text{ m}^2)^2 + 1.15 \times (135 \text{ m}^2) + 20 = 157 \text{ m}^3/h \]

Volumenstrom nach Summe der Ablufträume

<table>
<thead>
<tr>
<th>Raum</th>
<th>m³/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Küche</td>
<td>45</td>
</tr>
<tr>
<td>WC</td>
<td>25</td>
</tr>
<tr>
<td>HWR</td>
<td>25</td>
</tr>
<tr>
<td>Bad</td>
<td>45</td>
</tr>
<tr>
<td>(q_{v,Abluft})</td>
<td>140</td>
</tr>
</tbody>
</table>

Planung

Luftmengenberechnung

Volumenstrom nach Personenzahl

3 Personen

\[q_{v,\text{Person}} = 90 \text{ m}^3/\text{h} \]

Der anzusetzende Maximalwert ergibt sich für das Beispielgebäude aus der Wohnfläche.

\[\max (q_{v,\text{Fläche}}, q_{v,\text{Abluft}}, q_{v,\text{Person}}) = 157 \text{ m}^3/\text{h} \]

Zur endgültigen Ermittlung des Auslegungsvolumenstroms ist davon der natürliche Außenluftvolumenstrom durch Infiltration abzuziehen, da dieser nicht durch das Lüftungsgerät erbracht werden muss.

Volumenstrom durch Infiltration

Zentrale Zuluft, windschwache Lage

\[A_{\text{ges}} = 135 \text{ m}^2, \text{ Raumhöhe} = 2,5 \text{ m} \]

\[f_{\text{Inf}} = 0,053 \]

\[q_{v,\text{Inf}} = 0,053 * 135 \text{ m}^2 * 2,5 \text{ m} = 18 \text{ m}^3/\text{h} \]

Bestimmung Gesamtvolumenstrom

\[q_{v,\text{ges}} = \max (q_{v,\text{Fläche}}, q_{v,\text{Abluft}}, q_{v,\text{Person}}) - q_{v,\text{Inf}} \]

\[q_{v,\text{ges}} = 157 \text{ m}^3/\text{h} - 18 \text{ m}^3/\text{h} \approx 140 \text{ m}^3/\text{h} \]

Bestimmung der Zuluft-Volumenströme

Für jeden Zuluftraum ist je nach Nutzungsart der entsprechende Zuluftfaktor nach DIN 1946 Teil 6 zuzuweisen und anschließend die Summe aller Zuluftfaktoren zu bilden.

<table>
<thead>
<tr>
<th>Raum</th>
<th>f(_{\text{Zuluft}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wohnen</td>
<td>3,0</td>
</tr>
<tr>
<td>Schlafen</td>
<td>2,0</td>
</tr>
<tr>
<td>Kind</td>
<td>2,0</td>
</tr>
<tr>
<td>Gast</td>
<td>1,5</td>
</tr>
<tr>
<td>Summe</td>
<td>(\Sigma(f_{\text{Zuluft}}))</td>
</tr>
<tr>
<td></td>
<td>8,5</td>
</tr>
</tbody>
</table>

Über den Quotienten aus Zuluftfaktor und Summe der Zuluftfaktoren lässt sich für jeden Raum der Anteil am Gesamtvolumenstrom bestimmen.

\[q_{v,\text{Zu,Wohnen}} = (3,0 / 8,5) * 140 \text{ m}^3/\text{h} = 49 \text{ m}^3/\text{h} \]

\[q_{v,\text{Zu,Schlafen}} = (2,0 / 8,5) * 140 \text{ m}^3/\text{h} = 33 \text{ m}^3/\text{h} \]

\[q_{v,\text{Zu,Kind}} = (2,0 / 8,5) * 140 \text{ m}^3/\text{h} = 33 \text{ m}^3/\text{h} \]

\[q_{v,\text{Zu,Gast}} = (1,5 / 8,5) * 140 \text{ m}^3/\text{h} = 25 \text{ m}^3/\text{h} \]

Bestimmung der Abluft-Volumenströme

Die Abluft-Volumenströme können in Abhängigkeit der Nutzungsart des Raumes aus der entsprechenden Tabelle nach DIN 1946-6 entnommen werden. Dabei ist zu prüfen, ob die Summe aller Abluftmengen dem ermittelten Gesamtvolumenstrom entspricht. Sollte dies nicht der Fall sein, so sind die Abluftmengen entsprechend anzupassen.

<table>
<thead>
<tr>
<th>Raum</th>
<th>(q_{v,\text{Ab}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Küche</td>
<td>m/\text{h}</td>
</tr>
<tr>
<td>WC</td>
<td>m/\text{h}</td>
</tr>
<tr>
<td>Hauswirtschaftsraum</td>
<td>m/\text{h}</td>
</tr>
<tr>
<td>Bad</td>
<td>m/\text{h}</td>
</tr>
</tbody>
</table>

\[q_{v,\text{ges}} = \Sigma(q_{v,\text{Ab}}) = 140 \text{ m}^3/\text{h} \]

Betriebsstufen Lüftungsgerät

Mit Kenntnis des Gesamtvolumenstroms (Nennlüftung) können für alle vier Betriebsstufen die zugehörigen Volumenströme bestimmt werden.

Lüftung zum Feuchteschutz:

\[q_{v,\text{FL}} = 0,3 * 140 \text{ m}^3/\text{h} = 40 \text{ m}^3/\text{h} \]

Reduzierte Lüftung:

\[q_{v,\text{RL}} = 0,7 * 140 \text{ m}^3/\text{h} = 100 \text{ m}^3/\text{h} \]

Nennlüftung:

\[q_{v,\text{NL}} = 1,0 * 140 \text{ m}^3/\text{h} = 140 \text{ m}^3/\text{h} \]

Intensivlüftung:

\[q_{v,\text{IL}} = 1,3 * 140 \text{ m}^3/\text{h} = 180 \text{ m}^3/\text{h} \]
Luftverteilsysteme

Allgemeines

Um Druckverluste und Installationsaufwand gering zu halten, ist eine möglichst kurze Leitungsführung anzustreben. Dabei empfiehlt es sich, das System sternförmig anzulegen, d. h. zur Versorgung der einzelnen Räume den Gesamtvolumenstrom des Lüftungsgerätes über zentrale Verteileinheiten auf mehrere Stränge aufzuteilen.

Übersicht

Tabelle:

<table>
<thead>
<tr>
<th>Verlegeart</th>
<th>LVE onfloor</th>
<th>LVS onfloor</th>
<th>Wickelfalzrohr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verteiler für Bodeneinbau</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verteiler für Wandeinbau</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volumenstrom Verteiler</td>
<td>m³/h max. 270</td>
<td>max. 270</td>
<td>max. 135</td>
</tr>
<tr>
<td>Wandauslässe</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Deckenauslässe</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Bodenauslässe</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Design-Lüftungsgitter</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Luftmengenregelung</td>
<td>am Verteiler</td>
<td>am Verteiler</td>
<td>am Verteiler</td>
</tr>
<tr>
<td>Verbindungs-technik</td>
<td>Stecksystem</td>
<td>Stecksystem</td>
<td>Klick-System</td>
</tr>
<tr>
<td>Kanal</td>
<td>Kunststoff-Ovalrohr</td>
<td>Kunststoff-Rundrohr</td>
<td>Kunststoff-Rundrohr, Ovalrohr</td>
</tr>
</tbody>
</table>

Mögliche Verlegearten und geeignete Verteilsysteme

Beispiel Tabelle:

<table>
<thead>
<tr>
<th>Verlegeart</th>
<th>LVE onfloor</th>
<th>LVS onfloor</th>
<th>Wickelfalzrohr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fußbodenauflauf (Estrich)</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Innenwände</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Betondecke</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Filigrandecke</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Holzbalkendecke</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Abgehängte Decke</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Unter Decke</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Spitzboden</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Abseite/Drempel</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

Einsatzbereich

Volumenströme

Die Tabelle zeigt die maximal empfohlenen Luftvolumenströme.

<table>
<thead>
<tr>
<th>Verlegeart</th>
<th>LVE onfloor</th>
<th>LVS onfloor</th>
<th>Wickelfalzrohr - Nebenstrang</th>
<th>Wickelfalzrohr - Hauptstrang</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVE onfloor</td>
<td>130 x 52</td>
<td>65</td>
<td>3,0</td>
<td>5,1</td>
</tr>
<tr>
<td>LVS onfloor</td>
<td>DN 75</td>
<td>30</td>
<td>2,6</td>
<td>3,3</td>
</tr>
<tr>
<td>Wickelfalzrohr - Nebenstrang</td>
<td>DN 100</td>
<td>85</td>
<td>3,0</td>
<td>1,5</td>
</tr>
<tr>
<td>Wickelfalzrohr - Hauptstrang</td>
<td>DN 125</td>
<td>135</td>
<td>3,0</td>
<td>1,2</td>
</tr>
<tr>
<td></td>
<td>DN 160</td>
<td>220</td>
<td>3,0</td>
<td>0,9</td>
</tr>
<tr>
<td></td>
<td>DN 180</td>
<td>275</td>
<td>3,0</td>
<td>0,8</td>
</tr>
<tr>
<td>Wickelfalzrohr - Hauptstrang</td>
<td>DN 100</td>
<td>140</td>
<td>5,0</td>
<td>3,8</td>
</tr>
<tr>
<td></td>
<td>DN 125</td>
<td>220</td>
<td>5,0</td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td>DN 160</td>
<td>360</td>
<td>5,0</td>
<td>2,1</td>
</tr>
<tr>
<td></td>
<td>DN 180</td>
<td>460</td>
<td>5,0</td>
<td>2,0</td>
</tr>
</tbody>
</table>

* bei maximalem Volumenstrom

Die Festsetzung der Volumenströme erfolgte auf Grundlage der DIN 1946-6, welche die Auslegung der Verteilungen auf eine Strömungsgeschwindigkeit von 3 m/s empfiehlt, wobei zusätzlich auf moderate Druckverluste zu achten ist.
Planung

Systemauswahl im Neubau

Planungshandbuch Lüftung www.stiebel-eltron.de

Zentral
- Betondecke oder Holzbalkenlage
 - LVS infloor
- Abgehängte Decke
 - LVS infloor
 - LVE onfloor
 - LVE mit dezentralen Verteilern
- Estrichverlegung
 - LVE onfloor
 - LVE mit dezentralen Verteilern

Dezentral
- Außenwand
 - LWE 40
 - LA 50 / LA 60
- Schacht
 - LA 60

LVS infloor
- Flexibles Rundrohr in DN 75

LVE onfloor
- flexibler Flachkanal 130 x 52 mm

LVE mit dezentralen Verteilern
- flexibler Flachkanal 130 x 52 mm
- Revisionsöffnung für Verteiler im Fußboden oder in der Decke

LWE 40
- Pendellüfter mit Wärmerückgewinnung

LA 50
- Abluftlüfter für Wandeinbau ohne Wärmerückgewinnung

LA 60
- feuchtegeführter Abluftlüfter für Wand-/Kanaleinbau ohne Wärmerückgewinnung
Planung
Systemauswahl im Altbau

LVS infloor
- Flexibles Rundrohr in DN 75

LVE onfloor
- flexibler Flachkanal 130 x 52 mm

LVE mit dezentralen Verteilern
- flexibler Flachkanal 130 x 52 mm
- Revisionsöffnung für Verteiler im Fußboden oder in der Decke

LWE 40
- Pendellüfter mit Wärmerückgewinnung

LA 50
- Abluftlüfter für Wandeinbau ohne Wärmerückgewinnung

LA 60
- feuchtegeführter Abluftlüfter für Wand-/Kanaleinbau ohne Wärmerückgewinnung
Allgemeines

Das Luftverteilsystem LVS infloor wurde speziell für den Einbau in einer Betondecke, in abgehängten Decken oder Leichtbauwänden konzipiert. Es zeichnet sich durch seine hohe Flexibilität aus. Das patentierte Rundrohr besteht aus einem robusten gewellten Außenrohr und einem glatten Innenrohr, wodurch Luftmengen bis 30 m³/h bei geringem Druckverlust gefördert werden können.

Die geringe Anzahl von Bauteilen und das „Klick“-Verbindungsprinzip erlauben eine schnelle und werkzeugfreie Montage.

Prinzipskizze

Produktübersicht

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bestell-Nr.</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>234493</td>
<td>Schalldämmluftverteiler Aufputz, 9-fach, einstellbar</td>
</tr>
<tr>
<td>1</td>
<td>201456</td>
<td>Alternativ: Schalldämmluftverteiler Aufputz, 6-fach, einstellbar</td>
</tr>
<tr>
<td>2</td>
<td>236421</td>
<td>O-Ring Set DN 75 10 Stück</td>
</tr>
<tr>
<td>3</td>
<td>235058</td>
<td>Rohrpaket 25 m lang DN 75</td>
</tr>
<tr>
<td>4</td>
<td>235059</td>
<td>Rohrpaket 50 m lang DN 75</td>
</tr>
<tr>
<td>5</td>
<td>239130</td>
<td>Luftgitter, Design Langloch, weiß lackiert, 125 mm</td>
</tr>
<tr>
<td>6</td>
<td>239125</td>
<td>Deckenauslass 2 x DN 75 x 125</td>
</tr>
<tr>
<td>7</td>
<td>224897</td>
<td>LVS Adapter Rohrverlängerung DN 75</td>
</tr>
</tbody>
</table>
Installation

Die Luftverteilung erfolgt zentral im Technikraum am Verteiler. Von dort werden DN 75 LVS Rohre über einen Deckendurchbruch in die Filigrandezee oder die Balkenlage in die jeweiligen Etagen verlegt.

Der Deckenauslass wird im Beton gegen aufschwemmen gesichert. In einer Balkenlage wird der Deckenauslass verschraubt.

Die DN 75 LVS Rohre werden mit Stahllochband befestigt.

Wenn mehrere Kanäle direkt nebeneinander in einer Betondecke verlegt werden, kann die Statik der Betondecke dadurch vermindert werden. Zwischen den Rohren muss ein Mindestabstand von 120 mm eingehalten werden.

Wenn der Mindestabstand aufgrund der baulichen Gegebenheiten nicht realisiert werden kann, muss in dem betroffenen Bereich die Betondecke verstärkt werden. Die Betondecke muss durch einen Statiker geprüft werden.

Statik

Das Luftverteilssystem muss in die Statikberechnung der Betondecke einbezogen werden.

Insbesondere bei komplexeren Deckenkonstruktionen gibt es Zonen, in denen keine Rohre verlegt werden dürfen, z.B. bei kreuzverspannten Decken oder langen Spannweiten.

Der geplante Rohrleitungsverlauf muss vom zuständigen Statiker überprüft und freigegeben werden.

Auslegung

Bei der Planung der Luftverteilung sind die Beurteilung des Gesamtdruckverlustes und die Einregulierung der einzelnen Luftmengen von zentraler Bedeutung.

Werden die Planungshinweise eingehalten, ist der bestimmungsgemäße Betrieb der Lüftungsanlage für Einfamilienhäuser in der Regel sichergestellt.

Telefonieschalldämmung

<table>
<thead>
<tr>
<th>Mindest-Rohrleitungsänge</th>
<th>LVS</th>
<th>m</th>
</tr>
</thead>
</table>

Luftvolumenstrom der Auslässe

Die Auslässe sind im Volumenstrom begrenzt.

<table>
<thead>
<tr>
<th>Luftbereich</th>
<th>Einheit</th>
<th>LVE Gitter DN 125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuluft Wohnbereich</td>
<td>m³/h</td>
<td>35</td>
</tr>
<tr>
<td>Zuluft Schlafbereich</td>
<td>m³/h</td>
<td>30</td>
</tr>
<tr>
<td>Abluft</td>
<td>m³/h</td>
<td>50</td>
</tr>
</tbody>
</table>

Reinigung

Aufgrund der Sternverteilung und den dadurch bedingten kurzen Leitungslängen ist die Reinigung der Rohrleitungen problemlos möglich. Sowohl über den Zentralverteiler mit integrierter Revisionsöffnung als auch über die Luftauslässe kann die Reinigung mit einem kombinierten Bürsten-/Absaugsystem durchgeführt werden.
Planung

LVS infloor

Druckverlustberechnung

Die maximale Länge des LVS-Rohres hängt von dem Volumenstrom und den verwendeten Bauteilen ab.

Mithilfe der Druckverlusttabelle können für den festgelegten Volumenstrom des Stranges, die spezifischen Einzeldruckverluste der Bauteile und der Kanäle ermittelt werden. Der Gesamt-Druckverlust eines Stranges muss < 65 Pa sein.

Wenn der Druckverlust im Strang den Maximalwert übersteigt, muss der Volumenstrom auf zwei Stränge aufgeteilt werden. Hierfür ist am Auslass ein zweiter Anschluss vorhanden.

<table>
<thead>
<tr>
<th>Volumenstrom m³/h</th>
<th>(\text{Leistungslänge LVS-Rohr}) m</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>70</td>
</tr>
<tr>
<td>20</td>
<td>38</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
</tr>
</tbody>
</table>

In der Tabelle ist ein Auslass mit Gitter berücksichtigt.

Druckverlust LVS-Rohr

![Druckverlust LVS-Rohr Grafik](image)

X = Volumenstrom [m³/h], Y = Druckverlust [Pa/m]

Auslegungskriterien

- max. Volumenstrom pro Strang: 30 m³/h
- max. Druckverlust pro Strang: 65 Pa
- nur ein Ventil pro Strang
- bei hohen Druckverlusten Volumenstrom auf 2 Stränge aufteilen
- Zuleitung von Lüftungsgerät zum Verteiler VTS 9 in DN 160
- Zuleitung von Lüftungsgerät zum Verteiler VTS 6 in DN 125
- Mindestens 5 m Stranglänge
- Mindest-Biegeradius LVS Rohr: 200 mm
- LVS Rohr mit Stahllochband befestigen
- Planungen vom Statiker prüfen lassen

Strömungsgeschwindigkeit LVS-Rohr

![Strömungsgeschwindigkeit LVS-Rohr Grafik](image)

X = Volumenstrom [m³/h], Y = Strömungsgeschwindigkeit [m/s]
Planung
LVS infloor

Planungsbeispiel

Musterhaus

Gebäudedaten

- **Etagen**: EG, OG, DG (unbelüftet)
- **Gebäudeart**: Einfamilienhaus (Mehrgeschossig)
- **Wärmeschutz**: Neubau nach EnEV 2016
- **Personenzahl**: 4 Personen
- **PLZ / Ort**: 37603 Holzminden
- **Gebäudelage**: Windschwache Lage (> 3,3 m/s)
- **Windschutz**: Ungeschützte Lage
- **Wohnfläche**: 180 m²

Erdgeschoss

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Raum</th>
<th>Größe m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gästezimmer</td>
<td>15,51</td>
</tr>
<tr>
<td>2</td>
<td>Diele</td>
<td>12,52</td>
</tr>
<tr>
<td>3</td>
<td>WC</td>
<td>4,00</td>
</tr>
<tr>
<td>4</td>
<td>HWR</td>
<td>12,89</td>
</tr>
<tr>
<td>5</td>
<td>Kochen</td>
<td>15,05</td>
</tr>
<tr>
<td>6</td>
<td>Wohnen/Essen</td>
<td>30,10</td>
</tr>
</tbody>
</table>

Obergeschoss

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Raum</th>
<th>Größe m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kind 1</td>
<td>15,51</td>
</tr>
<tr>
<td>2</td>
<td>Bad</td>
<td>14,44</td>
</tr>
<tr>
<td>3</td>
<td>Ankleide</td>
<td>5,49</td>
</tr>
<tr>
<td>4</td>
<td>Flur</td>
<td>10,68</td>
</tr>
<tr>
<td>5</td>
<td>Kind 2</td>
<td>14,35</td>
</tr>
<tr>
<td>6</td>
<td>Arbeiten</td>
<td>13,76</td>
</tr>
<tr>
<td>7</td>
<td>Schlafen</td>
<td>14,82</td>
</tr>
</tbody>
</table>

Dachgeschoss

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Raum</th>
<th>Größe m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dachboden</td>
<td>106,04</td>
</tr>
</tbody>
</table>
Luftmengenberechnung gemäß DIN 1946 – Teil 6

Außenluftvolumenstrom Nennlüftung

<table>
<thead>
<tr>
<th>Bemessungsgrundlage</th>
<th>Volumenstrom</th>
<th>DIN 1946 – Teil 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Nach Gesamtfläche</td>
<td>194 m³/h</td>
<td>Tabelle 5 (f)</td>
</tr>
<tr>
<td>b) Nach Ablufräumen</td>
<td>165 m³/h</td>
<td>Tabelle 7</td>
</tr>
<tr>
<td>c) Nach Personen</td>
<td>120 m³/h</td>
<td>Tabelle 5 (b)</td>
</tr>
<tr>
<td>Maximalwert (a, b, c)</td>
<td>194 m³/h</td>
<td>Gleichung (11)</td>
</tr>
<tr>
<td>Infiltration</td>
<td>28 m³/h</td>
<td>Gleichung (13)</td>
</tr>
</tbody>
</table>

Betriebsstufen Lüftungsanlage

<table>
<thead>
<tr>
<th>Lüftungsart</th>
<th>Berechnet</th>
<th>Gewählt</th>
<th>DIN 1946 – Teil 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luftung Feuchteschutz</td>
<td>50 m³/h</td>
<td>50 m³/h</td>
<td>Gleichung (9)</td>
</tr>
<tr>
<td>Reduzierte Lüftung</td>
<td>116 m³/h</td>
<td>115 m³/h</td>
<td>Gleichung (10)</td>
</tr>
<tr>
<td>Nennlüftung</td>
<td>166 m³/h</td>
<td>165 m³/h</td>
<td>Gleichung (11)</td>
</tr>
<tr>
<td>Intensivlüftung</td>
<td>215 m³/h</td>
<td>215 m³/h</td>
<td>Gleichung (12)</td>
</tr>
</tbody>
</table>

Zuluftbereich

<table>
<thead>
<tr>
<th>Etage</th>
<th>Raumbezeichnung</th>
<th>Grundfläche m²</th>
<th>Raumvolumen m³</th>
<th>Luftmenge</th>
<th>Anzahl</th>
<th>Auslässe</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG</td>
<td>Gästezimmer</td>
<td>15,51</td>
<td>38,78</td>
<td>20</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EG</td>
<td>Wohnen / Essen</td>
<td>30,10</td>
<td>75,25</td>
<td>65</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>OG</td>
<td>Schlafen</td>
<td>14,82</td>
<td>37,05</td>
<td>30</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>OG</td>
<td>Kind 1</td>
<td>15,51</td>
<td>38,78</td>
<td>25</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>OG</td>
<td>Kind 2</td>
<td>14,35</td>
<td>38,88</td>
<td>25</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>OG</td>
<td>Arbeiten</td>
<td>13,76</td>
<td>34,40</td>
<td>20</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Abluftbereich

<table>
<thead>
<tr>
<th>Etage</th>
<th>Raumbezeichnung</th>
<th>Grundfläche m²</th>
<th>Raumvolumen m³</th>
<th>Luftmenge</th>
<th>Anzahl</th>
<th>Auslässe</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG</td>
<td>WC</td>
<td>4,00</td>
<td>10,00</td>
<td>25</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EG</td>
<td>HWR</td>
<td>12,89</td>
<td>32,23</td>
<td>25</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EG</td>
<td>Küchen</td>
<td>15,05</td>
<td>37,63</td>
<td>45</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>OG</td>
<td>Bad</td>
<td>14,44</td>
<td>36,10</td>
<td>45</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>OG</td>
<td>Ankleide</td>
<td>5,49</td>
<td>13,73</td>
<td>25</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Überströmbereich

<table>
<thead>
<tr>
<th>Etage</th>
<th>Raumbezeichnung</th>
<th>Grundfläche m²</th>
<th>Raumvolumen m³</th>
<th>Luftmenge</th>
<th>Anzahl</th>
<th>Auslässe</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG</td>
<td>Diele</td>
<td>12,52</td>
<td>31,30</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>OG</td>
<td>Flur</td>
<td>10,68</td>
<td>26,70</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Die Auswahl eines geeigneten Lüftungsgerätes erfolgt anhand des Nennvolumenstromes und ggf. weiterer produktspezifischer Anforderungen.

Materialzusammenstellung

Für die Zusammenstellung des benötigten Lüftungsmaterials bestehen drei Möglichkeiten.

Möglichkeit 1

Vordefinierte Lüftungssets

Unsere Lüftungssets beinhalten eine Bauteilzusammenstellung basierend auf unseren Erfahrungswerten.

Bei den Lüftungssets wird nur das Material aus dem LVE / LVS Sortiment sowie der VTS 9 Verteiler berücksichtigt.

Material für Außen- und Fortluft, die Anbindung vom Verteiler sowie die Komponenten für das Lüftungsgerät müssen separat erfasst werden.

Möglichkeit 2

Schnelle Berechnung mit dem Online Lüftungstool

Unser Online Lüftungstool erstellt relativ genaue Materialstücklisten, basierend auf den Gebäudedaten, der Luftmengenberechnung und Strangstücklisten. Hierbei wird das Lüftungsgerät, die Anbindung vom Lüftungsgerät zum Verteiler und die Außen- und Fortluft berücksichtigt.

Möglichkeit 3:

3D Lüftungsplanung

Materialzusammenstellung

Für die Zusammenstellung des benötigten Lüftungsmaterials bestehen drei Möglichkeiten.

Möglichkeit 1

Vordefinierte Lüftungssets

Unsere Lüftungssets beinhalten eine Bauteilzusammenstellung basierend auf unseren Erfahrungswerten.

Bei den Lüftungssets wird nur das Material aus dem LVE / LVS Sortiment sowie der VTS 9 Verteiler berücksichtigt.

Material für Außen- und Fortluft, die Anbindung vom Verteiler sowie die Komponenten für das Lüftungsgerät müssen separat erfasst werden.

Möglichkeit 2

Schnelle Berechnung mit dem Online Lüftungstool

Unser Online Lüftungstool erstellt relativ genaue Materialstücklisten, basierend auf den Gebäudedaten, der Luftmengenberechnung und Strangstücklisten. Hierbei wird das Lüftungsgerät, die Anbindung vom Lüftungsgerät zum Verteiler und die Außen- und Fortluft berücksichtigt.

Möglichkeit 3:

3D Lüftungsplanung

Hinweise zum Lüftungsgerät, Außen- und Fortluft:

Die Außenluftansaugung für die kontrollierte Wohnraumlüftung muss mindestens 2 Meter über Erdgleiche erfolgen. Des Weiteren müssen Kurzschlüsse mit z.B. Fortluft oder Schornsteinen vermieden werden.

Der Außen- und Fortluft-Kanal ist mit diffusionsdichter Isolierung vor Schwitzwasser zu schützen.
Hinweise zum Zentralen Verteilsystem LVS infloor

Luftverteilssystem LVS infloor:
Zuleitung zum Verteiler: DN 160
Ab Verteiler: DN 75 LVS Rohr
Ventile: DN 125 LVE Gitter
Planungshinweise

- Planungsunterlagen vom zuständigen Statiker überprüfen und freigeben lassen.
- Außendurchmesser der Luftschläuche 75 mm
- System ausschließlich in luftdicht abgeschlossenen Bauteilen verbauen.
- Filigrandecken für den Einbau der speziellen Einbauteile vorbereiten.
- Luftschräuche möglichst waagerecht, in großen Radien und Abständen verlegen.
- Bei Filigrandecken: Luftschläuche und Bauteile zwischen der oberen und unteren Armierung verlegen.
- Bei Filigrandecken: Luftschläuche sorgfältig gegen Aufschwemmen und Verschieben befestigen.
- Befestigungshilfen der Einbauteile verwenden.
- Leitungskreuzungen vermeiden.
- scharfe 90° Umlenkungen vermeiden.
- Verbleibende Öffnungen an Verteil- und Auslasseinrichtungen sorgfältig verschließen.
Nr. | Raum | Lüftung | Volumenstrom m³/h
-----|---------|----------|------------------
1 | Dachboden | Unbelüftet | 0

Hinweis bei Verlegung im ungedämmten Dachboden:
Zur Vermeidung von Energieverlusten müssen Lüftungsleitungen außerhalb der thermischen Hülle gedämmt werden.
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Etage</th>
<th>Raumbezeichnung</th>
<th>Ventil</th>
<th>Größe in m²</th>
<th>Lüftung</th>
<th>Volumenstrom</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OG</td>
<td>Arbeiten</td>
<td>Deckenventil</td>
<td>13,76</td>
<td>Zuluft</td>
<td>20 m³/h</td>
</tr>
<tr>
<td>2</td>
<td>EG</td>
<td>Wohnen/Essen</td>
<td>Deckenventil</td>
<td>30,10</td>
<td>Zuluft</td>
<td>45 m³/h</td>
</tr>
<tr>
<td>3</td>
<td>EG</td>
<td>Kochen</td>
<td>Deckenventil</td>
<td>15,05</td>
<td>Abluft</td>
<td>25 m³/h</td>
</tr>
<tr>
<td>4</td>
<td>OG</td>
<td>Kind 2</td>
<td>Deckenventil</td>
<td>15,51</td>
<td>Zuluft</td>
<td>25 m³/h</td>
</tr>
<tr>
<td>5</td>
<td>OG</td>
<td>Kind 1</td>
<td>Deckenventil</td>
<td>14,35</td>
<td>Zuluft</td>
<td>25 m³/h</td>
</tr>
<tr>
<td>6</td>
<td>OG</td>
<td>Schafen</td>
<td>Deckenventil</td>
<td>14,82</td>
<td>Zuluft</td>
<td>30 m³/h</td>
</tr>
<tr>
<td>7</td>
<td>EG</td>
<td>WC</td>
<td>Deckenventil</td>
<td>4,00</td>
<td>Abluft</td>
<td>25 m³/h</td>
</tr>
<tr>
<td>8</td>
<td>OG</td>
<td>Bad</td>
<td>Deckenventil</td>
<td>14,44</td>
<td>Abluft</td>
<td>45 m³/h</td>
</tr>
<tr>
<td>9</td>
<td>OG</td>
<td>Ankleide</td>
<td>Deckenventil</td>
<td>5,49</td>
<td>Abluft</td>
<td>25 m³/h</td>
</tr>
<tr>
<td>10</td>
<td>EG</td>
<td>Gästezimmer</td>
<td>Deckenventil</td>
<td>15,51</td>
<td>Zuluft</td>
<td>20 m³/h</td>
</tr>
<tr>
<td>11</td>
<td>EG</td>
<td>Hausarbeitsraum</td>
<td>Deckenventil</td>
<td>12,89</td>
<td>Abluft</td>
<td>25 m³/h</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Außenluft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Fortluft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Stückliste:

Nach der detaillierten Planung der Lüftungsanlage wird das folgende Material für die Installation benötigt.

Lüftungsgerät und Zubehör

<table>
<thead>
<tr>
<th>Position</th>
<th>Anzahl</th>
<th>Mat.-Nr.</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>232361</td>
<td>LWZ 180</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>236039</td>
<td>FEB, Bedieneinheit</td>
</tr>
</tbody>
</table>

Material Zuluft / Abluft

<table>
<thead>
<tr>
<th>Position</th>
<th>Anzahl</th>
<th>Mat.-Nr.</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>12</td>
<td>239130</td>
<td>Luftgitter, Design Langloch, weiß lackiert, 125 mm</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>234493</td>
<td>LVS Schallgedämmter Luftverteiler Aufputz VTS 9</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>235059</td>
<td>LVS Flexibles Kunststoffrohr DN 75, 50 m</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>239125</td>
<td>Deckenauslass 2 x DN 75 x 125</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>161096</td>
<td>Wickelfalzrohr DN 160, 2 m</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>159329</td>
<td>Bogen 90° DN 160</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>159348</td>
<td>Stahlrohband verzinkt, 10 m</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>227948</td>
<td>Klebeband, alukaschiert mit Schutzfolie, 10 m</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>236421</td>
<td>LVS Dichtring Übergang Wickelfalzrohr DN 75, 10 Stück</td>
</tr>
</tbody>
</table>

Material Außenluft / Fortluft

<table>
<thead>
<tr>
<th>Position</th>
<th>Anzahl</th>
<th>Mat.-Nr.</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>2</td>
<td>234505</td>
<td>Außenwand-Durchführung AWG 160 R</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>239232</td>
<td>LWF DR 160-1 EPP</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>239235</td>
<td>LWF DRB 160-90 EPP</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>159320</td>
<td>LWF N 160</td>
</tr>
</tbody>
</table>

Hier gehts zur Stiebel-Eltron Toolbox

https://www.stiebel-eltron.de/toolbox/lueftung/
Allgemeines
Das Luftverteilsystem LVE onfloor wurde speziell für den Einbau in der Dämmebene unter dem Estrich, für den Einbau in abgehängten Decken oder Leichtbauwänden konzipiert. Es zeichnet sich durch seine hohe Stabilität und die geringe Aufbauhöhe von lediglich ca. 52 mm aus. Das patentierte Ovalrohr besteht aus einem robusten gewellten Außenrohr und einem glatten Innenrohr. Die geringe Anzahl von Bauteilen und das „Klick“-Verbindungsprinzip erlauben eine schnelle und werkzeugfreie Montage.

Prinzipskizze

Produktübersicht

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bestell-Nr.</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>234493</td>
<td>Schalldämmluftverteiler Aufputz, 9-fach, einstellbar</td>
</tr>
<tr>
<td>1</td>
<td>201456</td>
<td>(Alternativ) Schalldämmluftverteiler Aufputz, 6-fach, einstellbar</td>
</tr>
<tr>
<td>2</td>
<td>236421</td>
<td>O-Ring Set DN 75 10 Stück</td>
</tr>
<tr>
<td>3</td>
<td>235058</td>
<td>Rohrpaket 25 m lang DN 75</td>
</tr>
<tr>
<td>4</td>
<td>235059</td>
<td>Rohrpaket 50 m lang DN 75</td>
</tr>
<tr>
<td>5</td>
<td>231111</td>
<td>Flacher, flexibler Kunststoffkanal, 20 m lang</td>
</tr>
<tr>
<td>6</td>
<td>239124</td>
<td>LVE Wandauslass komplett</td>
</tr>
<tr>
<td>7</td>
<td>231120</td>
<td>Übergangsstück Lagewechsel 180°</td>
</tr>
<tr>
<td>8</td>
<td>231125</td>
<td>Fußbodenauslass komplett</td>
</tr>
<tr>
<td>9</td>
<td>231122</td>
<td>Bogen 90° komplett flach</td>
</tr>
<tr>
<td>10</td>
<td>231123</td>
<td>Bogen 90° komplett hoch</td>
</tr>
<tr>
<td>11</td>
<td>235912</td>
<td>Übergangsbogen auf LVS, Anschluss von unten</td>
</tr>
<tr>
<td>12</td>
<td>235913</td>
<td>Übergangsbogen auf LVS, Anschluss von oben</td>
</tr>
<tr>
<td>13</td>
<td>239130</td>
<td>Luftgitter, Design Langloch weiß lackiert, 125 mm</td>
</tr>
<tr>
<td>14</td>
<td>231115</td>
<td>Design Langloch Edelstahl gebürstet</td>
</tr>
<tr>
<td>15</td>
<td>231113</td>
<td>Kanalbefestigungsschelle 10 Stück</td>
</tr>
<tr>
<td>16</td>
<td>231112</td>
<td>Muffe, 5 Stück</td>
</tr>
<tr>
<td>17</td>
<td>239126</td>
<td>Y-Stück für Anschluss 2 x LVE Kanal an Luftauslass</td>
</tr>
</tbody>
</table>
Planung
LVE onfloor

Installation

Die Luftverteilung erfolgt zentral im Technikraum am VTS 6 bzw. VTS 9 Verteiler. Von dort werden DN 75 LVS Rohre in die jeweiligen Etagen verlegt. In den Etagen erfolgt durch einen Umlenk- bogen, z. B. in Höhe der Estrichdämmung, der Wechsel auf das LVE 52 x 130 mm Ovalrohrsystem.

Bei der Installation im Fußboden können mehrere Kanäle direkt nebeneinander die Tragkraft des Estrichs vermindern. Wir empfehlen ein Mindestabstand von 120 mm. Kann der Mindestabstand aufgrund der baulichen Gegebenheiten nicht realisiert werden, muss in dem betroffenen Bereich der Estrich verstärkt werden.

Die Abluft wird in Deckennähe über Wand- oder Deckenauslässe abgesaugt, im Zuluftbereich können zusätzlich auch Bodenauslässe eingesetzt werden. Je nach Leitungslänge benötigt ein Ventil eine oder zwei Zuleitungen.

Ein zusätzlicher Schalldämpfer ist nicht erforderlich, da dieser im Verteiler/Sammler integriert ist.

Bauteilübersicht

Reinigung

Aufgrund der Sternverteilung und den dadurch bedingten kurzen Leitungslängen ist die Reinigung der Rohrleitungen problemlos möglich. Sowohl über den Zentralverteiler VTS 6 bzw. VTS 9 mit integrierter Revisionsöffnung als auch über die Luftauslässe kann die Reinigung mit einem kombinierten Bürsten-/Absaugsystem durchgeführt werden.

Statik

Kanäle und Formteile sind ausgelegt für eine Estrichüberdeckung von bis zu 50 mm. Mehrere Kanäle direkt nebeneinander können die Tragkraft des Estrichs reduzieren. Wenn dies nicht vermieden werden kann, muss zusätzlich eine ausreichende Bewehrung eingesetzt werden. Die Trittschalldämmung sollte aufgrund von Körperschallübertragung nicht unterbrochen werden.

Auslegung

Bei der Planung der Luftverteilung sind die Beurteilung des Gesamtdruckverlustes und die Einregulierung der einzelnen Luftmengen von zentraler Bedeutung. Werden die Planungshinweise eingehalten, ist der bestimmungsgemäße Betrieb der Lüftungsanlage für Einfamilienhäuser in der Regel sichergestellt.

Die LVS und LVE Leitung dürfen in Summe die Mindestlänge von 5 m pro Strang nicht unterschreiten, um die Telefonieschalldämmung zu gewährleisten.

Die Luftauslässe, LVE Gitter DN 125 und der LVE Fußbodenauslass, sind für die jeweiligen Anwendungen im Volumenstrom begrenzt. Die Richtwerte können aus der Tabelle entnommen werden.

<table>
<thead>
<tr>
<th>Luftbereich</th>
<th>Einheit</th>
<th>LVE Gitter DN 125</th>
<th>Fußbodenauslass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuluft Wohnbereich</td>
<td>m³/h</td>
<td>35</td>
<td>45</td>
</tr>
<tr>
<td>Zuluft Schlafbereich</td>
<td>m³/h</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Abluft</td>
<td>m³/h</td>
<td>50</td>
<td>-</td>
</tr>
</tbody>
</table>

Die maximale Länge des Kanals hängt von dem Volumenstrom und den verwendeten Bauteilen ab.

Druckverlustberechnung

<table>
<thead>
<tr>
<th>Bauteil</th>
<th>Volumenstrom</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td>LVS-Kanal DN 75</td>
<td>Pa/m</td>
</tr>
<tr>
<td>LVE-Kanal 130 x 52 mm</td>
<td>0.4</td>
</tr>
<tr>
<td>Übergang LVS-LVE, gerade</td>
<td>0.2</td>
</tr>
<tr>
<td>Übergang LVS-LVE, Bogen, unten</td>
<td>0.5</td>
</tr>
<tr>
<td>Übergang LVS-LVE, Bogen, oben</td>
<td>0.5</td>
</tr>
<tr>
<td>LVE-Bogen 90°, flach</td>
<td>0.3</td>
</tr>
<tr>
<td>LVE-Bogen 90°, hoch</td>
<td>0.5</td>
</tr>
<tr>
<td>Übergangsstück 180°</td>
<td>0.2</td>
</tr>
<tr>
<td>Fußbodenauslass mit Gitter</td>
<td></td>
</tr>
</tbody>
</table>

Druckverlust LVE Kanal

![Druckverlust LVE Kanal](image)

Auslegungskriterien kurz und bündig:

- max. Volumenstrom pro Strang: 30 m³/h
- max. Druckverlust pro Strang: 65 Pa
- nur ein Ventil pro Strang
- bei hohen Druckverlusten Volumenstrom auf 2 Stränge aufteilen
- Zuleitung von Lüftungsgerät zum Verteiler VTS 9 in DN 160
- Zuleitung von Lüftungsgerät zum Verteiler VTS 6 in DN 125
- Mindestens 5 m Stranglänge
- Verlegung Etagenübergreifend in LVS Rohr DN 75
- Verlegung in der Etage in LVE Flachkanal 130 x 52 mm
- LVE Kanäle, wenn möglich, mit 400 mm Radius biegen, statt Bögen zu Verwenden
- Keine Bodenauslässe im Abluftbereich
Planung
LVE onfloor

Planungsbeispiel

Musterhaus

Gebäudedaten

<table>
<thead>
<tr>
<th>Etage</th>
<th>EG, OG, DG (unbelüftet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gebäudeart</td>
<td>Einfamilienhaus (Mehrgeschossig)</td>
</tr>
<tr>
<td>Wärmeschutz</td>
<td>Neubau nach EnEV 2016</td>
</tr>
<tr>
<td>Personenzahl</td>
<td>4 Personen</td>
</tr>
<tr>
<td>PLZ / Ort</td>
<td>37603 Holzminden</td>
</tr>
<tr>
<td>Gebäudelage</td>
<td>Windschwache Lage (> 3,3 m/s)</td>
</tr>
<tr>
<td>Windschutz</td>
<td>Ungeschützte Lage</td>
</tr>
<tr>
<td>Wohnfläche</td>
<td>180 m²</td>
</tr>
</tbody>
</table>

Erdgeschoss

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Raum</th>
<th>Größe m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gästezimmer</td>
<td>15,51</td>
</tr>
<tr>
<td>2</td>
<td>Diele</td>
<td>12,52</td>
</tr>
<tr>
<td>3</td>
<td>WC</td>
<td>4,00</td>
</tr>
<tr>
<td>4</td>
<td>HWR</td>
<td>12,89</td>
</tr>
<tr>
<td>5</td>
<td>Kochen</td>
<td>15,05</td>
</tr>
<tr>
<td>6</td>
<td>Wohnen/Essen</td>
<td>30,10</td>
</tr>
</tbody>
</table>

Obergeschoss

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Raum</th>
<th>Größe m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kind 1</td>
<td>15,51</td>
</tr>
<tr>
<td>2</td>
<td>Bad</td>
<td>14,44</td>
</tr>
<tr>
<td>3</td>
<td>Ankleide</td>
<td>5,40</td>
</tr>
<tr>
<td>4</td>
<td>Flur</td>
<td>10,58</td>
</tr>
<tr>
<td>5</td>
<td>Kind 2</td>
<td>14,35</td>
</tr>
<tr>
<td>6</td>
<td>Arbeiten</td>
<td>13,76</td>
</tr>
<tr>
<td>7</td>
<td>Schlafen</td>
<td>14,82</td>
</tr>
</tbody>
</table>

Dachgeschoss

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Raum</th>
<th>Größe m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dachboden</td>
<td>106,04</td>
</tr>
</tbody>
</table>
Luftmengenberechnung gemäß DIN 1946 – Teil 6

Außenluftvolumenstrom Nennlüftung

<table>
<thead>
<tr>
<th>Bemessungsgrundlage</th>
<th>Volumenstrom</th>
<th>DIN 1946 – Teil 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Nach Gesamtfläche</td>
<td>194 m³/h</td>
<td>Tabelle 5 (f)</td>
</tr>
<tr>
<td>b) Nach Ablufräumen</td>
<td>165 m³/h</td>
<td>Tabelle 7</td>
</tr>
<tr>
<td>c) Nach Personen</td>
<td>120 m³/h</td>
<td>Tabelle 5 (b)</td>
</tr>
<tr>
<td>Maximalwert (a, b, c)</td>
<td>194 m³/h</td>
<td>Gleichung (11)</td>
</tr>
<tr>
<td>Infiltration</td>
<td>28 m³/h</td>
<td>Gleichung (13)</td>
</tr>
<tr>
<td>Volumenstrom Nennlüftung</td>
<td>166 m³/h</td>
<td>Gleichung (11)</td>
</tr>
</tbody>
</table>

Betriebsstufen Lüftungsanlage

<table>
<thead>
<tr>
<th>Betriebsstufe</th>
<th>Luftart</th>
<th>Berechnet</th>
<th>Gewählt</th>
<th>DIN 1946 – Teil 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lüftungsart</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lüftung Feuchteschutz</td>
<td>50 m³/h</td>
<td>50 m³/h</td>
<td>Gleichung (9)</td>
<td></td>
</tr>
<tr>
<td>Reduzierte Lüftung</td>
<td>116 m³/h</td>
<td>115 m³/h</td>
<td>Gleichung (10)</td>
<td></td>
</tr>
<tr>
<td>Nennlüftung</td>
<td>166 m³/h</td>
<td>Gleichung (11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intensivlüftung</td>
<td>215 m³/h</td>
<td>Gleichung (12)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zuluftbereich

<table>
<thead>
<tr>
<th>Etage</th>
<th>Raumbezeichnung</th>
<th>Grundfläche</th>
<th>Raumvolumen</th>
<th>Luftmenge</th>
<th>Anzahl Auslässe</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG</td>
<td>Gästezimmer</td>
<td>15,51</td>
<td>38,78</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Wohnen / Essen</td>
<td>30,10</td>
<td>75,25</td>
<td>65</td>
<td>2</td>
</tr>
<tr>
<td>OG</td>
<td>Schlafen</td>
<td>14,82</td>
<td>37,05</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>OG</td>
<td>Kind 1</td>
<td>15,51</td>
<td>38,78</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>OG</td>
<td>Kind 2</td>
<td>14,35</td>
<td>38,88</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>OG</td>
<td>Arbeiten</td>
<td>13,76</td>
<td>34,40</td>
<td>20</td>
<td>1</td>
</tr>
</tbody>
</table>

Abluftbereich

<table>
<thead>
<tr>
<th>Etage</th>
<th>Raumbezeichnung</th>
<th>Grundfläche</th>
<th>Raumvolumen</th>
<th>Luftmenge</th>
<th>Anzahl Auslässe</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG</td>
<td>WC</td>
<td>4,00</td>
<td>10,00</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>EG</td>
<td>HWR</td>
<td>12,89</td>
<td>32,23</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>EG</td>
<td>Küchen</td>
<td>15,05</td>
<td>37,63</td>
<td>45</td>
<td>1</td>
</tr>
<tr>
<td>OG</td>
<td>Bad</td>
<td>14,44</td>
<td>36,10</td>
<td>45</td>
<td>1</td>
</tr>
<tr>
<td>OG</td>
<td>Ankleide</td>
<td>5,49</td>
<td>13,73</td>
<td>25</td>
<td>1</td>
</tr>
</tbody>
</table>

Überströmbereich

<table>
<thead>
<tr>
<th>Etage</th>
<th>Raumbezeichnung</th>
<th>Grundfläche</th>
<th>Raumvolumen</th>
<th>Luftmenge</th>
<th>Anzahl Auslässe</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG</td>
<td>Diele</td>
<td>12,52</td>
<td>31,30</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OG</td>
<td>Flur</td>
<td>10,68</td>
<td>26,70</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Materialzusammenstellung

Für die Zusammenstellung des benötigten Lüftungsmaterials bestehen drei Möglichkeiten.

Möglichkeit 1

Vordefinierte Lüftungssets

Unsere Lüftungssets beinhalten eine Bauteilzusammenstellung basierend auf unseren Erfahrungswerten.

Bei den Lüftungssets wird nur das Material aus dem LVE / LVS Sortiment sowie der VTS 9 Verteiler berücksichtigt.

Material für Außen- und Fortluft, die Anbindung vom Verteiler sowie die Komponenten für das Lüftungsgerät müssen separat erfasst werden.

Möglichkeit 2

Schnelle Berechnung mit dem Online-Lüftungstool

Unser Online-Lüftungstool erstellt relativ genaue Materialstücklisten, basierend auf den Gebäudedaten, der Luftmengenberechnung und Strangstücklisten. Hierbei wird das Lüftungsgerät, die Anbindung vom Lüftungsgerät zum Verteiler und die Außen- und Fortluft berücksichtigt.

Möglichkeit 3

3D Lüftungsplanung

Die Auswahl eines geeigneten Lüftungsgerätes erfolgt anhand des Nennvolumenstromes und ggf. weiterer produktspezifischer Anforderungen.

Gewähltes Lüftungsgerät

<table>
<thead>
<tr>
<th>Mat.-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>232361</td>
</tr>
</tbody>
</table>
Hinweise zum Lüftungsgerät, Außen- und Fortluft:

Die Außenluftansaugung für die kontrollierte Wohnraumlüftung muss mindestens 2 Meter über Erdgleiche erfolgen. Des Weiteren müssen Kurzschlüsse mit z.B. Fortluft oder Schornsteinen vermieden werden.

Der Außen- und Fortluft Kanal ist mit diffusionsdichter Isolierung vor Schwitzwasser zu Schützen.
Hinweise zum Zentralen Verteilsystem LVE onfloor

Dimensionen:
Zuleitung zum Verteiler: DN 160 Wickelfalzrohr
Steigleitungen: DN 75 LVS Rundrohr
Etagenverteilung (im Estrich): 130 x 52 mm LVE Flachkanal
Wand- und Deckenventile: DN 125 LVE Gitter + Fußbodenauslass
Planung
LVE onfloor

Planungshinweise

– Halten Sie zwischen Auslässen und Verteiler eine Lüftungs-kanal-Mindestlänge von 5 m ein. Der Abstand verringert die Telefonieschall-Übertragung.

– Richtungsänderungen können durch Biegen des Kanals (r=400 mm) oder mit den entsprechenden Formteilen ausgeführt werden.

– Verbleibende Öffnungen an Verteil- und Auslasseinrichtungen sind mit Blinddeckeln zu verschließen.

– Um eine regelmäßige Reinigung des Systems und den Abgleich der Luftvolumenströme vornehmen zu können, sind die Luftverteilkästen dauerhaft zugänglich zu halten.

– Um den Druckverlust in den Kanälen zu verringern, werden Auslässe ggf. mit 2 Kanälen angeschlossen.
Hinweis bei Verlegung im ungedämmten Dachboden:

Zur Vermeidung von Energieverlusten müssen Lüftungsleitungen außerhalb der thermischen Hülle gedämmt werden.
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Etage</th>
<th>Raumbezeichnung</th>
<th>Ventil</th>
<th>Größe (\text{m}^2)</th>
<th>Lüftung</th>
<th>Volumenstrom</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OG</td>
<td>Arbeiten</td>
<td>Fußbodenauslass</td>
<td>13,76</td>
<td>Zuluft</td>
<td>20 m³/h</td>
</tr>
<tr>
<td>2</td>
<td>EG</td>
<td>Wohnen/Essen</td>
<td>Deckenventil</td>
<td>30,10</td>
<td>Zuluft</td>
<td>45 m³/h</td>
</tr>
<tr>
<td>3</td>
<td>EG</td>
<td>Kochen</td>
<td>Deckenventil</td>
<td>15,05</td>
<td>Abluft</td>
<td>45 m³/h</td>
</tr>
<tr>
<td>4</td>
<td>OG</td>
<td>Kind 2</td>
<td>Fußbodenauslass</td>
<td>14,35</td>
<td>Zuluft</td>
<td>25 m³/h</td>
</tr>
<tr>
<td>5</td>
<td>OG</td>
<td>Kind 1</td>
<td>Fußbodenauslass</td>
<td>15,51</td>
<td>Zuluft</td>
<td>25 m³/h</td>
</tr>
<tr>
<td>6</td>
<td>OG</td>
<td>Schlafen</td>
<td>Fußbodenauslass</td>
<td>14,82</td>
<td>Zuluft</td>
<td>30 m³/h</td>
</tr>
<tr>
<td>7</td>
<td>EG</td>
<td>Gästezimmer</td>
<td>Deckenventil</td>
<td>15,51</td>
<td>Zuluft</td>
<td>20 m³/h</td>
</tr>
<tr>
<td>8</td>
<td>OG</td>
<td>Bad</td>
<td>Wandauslass</td>
<td>14,44</td>
<td>Abluft</td>
<td>45 m³/h</td>
</tr>
<tr>
<td>9</td>
<td>OG</td>
<td>Ankleide</td>
<td>Wandauslass</td>
<td>5,49</td>
<td>Abluft</td>
<td>25 m³/h</td>
</tr>
<tr>
<td>10</td>
<td>EG</td>
<td>WC</td>
<td>Deckenventil</td>
<td>4,00</td>
<td>Abluft</td>
<td>25 m³/h</td>
</tr>
<tr>
<td>11</td>
<td>EG</td>
<td>Hausarbeitsraum</td>
<td>Deckenventil</td>
<td>12,89</td>
<td>Abluft</td>
<td>25 m³/h</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Außenluft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Fortluft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hier geht es zur Stiebel-Eltron Toolbox

https://www.stiebel-eltron.de/toolbox/lueftung/
Notizen
Planung
LVE mit Etagenverteilern

Allgemeines
Das zentrale Kunststoff-Luftverteilsystem wurde speziell für den Einbau in der Dämmebene unter dem Estrich, für den Einbau in abgehängten Decken oder Leichtbauwänden konzipiert. Es zeichnet sich durch seine hohe Stabilität und die geringe Aufbauhöhe von lediglich ca. 52 mm aus. Das patentierte Ovalrohr besteht aus einem robusten gewellten Außenrohr und einem glatten Innenrohr, wodurch Luftmengen bis 45 m³/h bei moderaten Druckverlusten gefordert werden können. Die geringe Anzahl von Bauteilen und das intelligente "Klick"-Verbindungsprinzip erlauben eine schnelle und werkzeugfreie Montage.

Prinzipskizze

Produktübersicht

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bestell-Nr.</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>231111</td>
<td>Flacher, flexibler Kunststoffkanal, 20 m lang</td>
</tr>
<tr>
<td>2</td>
<td>239124</td>
<td>LVE Wandauslass komplett</td>
</tr>
<tr>
<td>3</td>
<td>231120</td>
<td>Übergangsstück Lagewechsel 180°</td>
</tr>
<tr>
<td>4</td>
<td>231125</td>
<td>Fußbodenauslass komplett</td>
</tr>
<tr>
<td>5</td>
<td>231122</td>
<td>Bogen 90° komplett flach</td>
</tr>
<tr>
<td>6</td>
<td>231123</td>
<td>Bogen 90° komplett hoch</td>
</tr>
<tr>
<td>7</td>
<td>239129</td>
<td>Luftgitter, Design Langloch Edelstahl, 125 mm</td>
</tr>
<tr>
<td>8</td>
<td>231115</td>
<td>Design Langloch Edelstahl gebürstet</td>
</tr>
<tr>
<td>9</td>
<td>231113</td>
<td>Kanalbefestigungsscheibe 10 Stück</td>
</tr>
<tr>
<td>10</td>
<td>231112</td>
<td>Muffe, 5 Stück</td>
</tr>
<tr>
<td>11</td>
<td>239126</td>
<td>Y-Stück für Anschluss 2 x LVE Kanal an Luftauslass</td>
</tr>
<tr>
<td>12</td>
<td>231126</td>
<td>Zentraler LVE-Luftverteiler</td>
</tr>
<tr>
<td>13</td>
<td>231116</td>
<td>LVE-Enddeckel, 5 Stück</td>
</tr>
<tr>
<td>14</td>
<td>231457</td>
<td>LVE Verteilerabdeckung für Fußbodeneinbau</td>
</tr>
</tbody>
</table>
Installation

Reinigung

Statik

Bei der Installation im Fußboden können mehrere Kanäle direkt nebeneinander die Tragkraft des Estrichs vermindern, es wird daher ein Mindestabstand von ca. 120 mm empfohlen. Kann dies aufgrund der baulichen Gegebenheiten nicht realisiert werden, muss in dem betroffenen Bereich der Estrich verstärkt werden. Die Trittschalldämmung sollte aufgrund von Körperschallübertragung nicht unterbrochen werden.

Auslegung

Bei der Planung der Luftverteilung sind die Beurteilung des Gesamtdruckverlustes und die Einregulierung der einzelnen Luftmengen von zentraler Bedeutung. Werden die Planungshinweise eingehalten, ist der bestimmmungsgemäße Betrieb der Lüftungsanlage für Einfamilienhäuser in der Regel sichergestellt.

Die LVE Leitung darf die Mindestlänge von 5m pro Strang nicht unterschreiten, um die Telefonieschalldämmung zu gewährleisten.

Die Luftauslässe, LVE Gitter DN 125 und der LVE Fußbodenaußluss, sind für die jeweiligen Anwendungen im Volumenstrom begrenzt. Die Richtwerte können aus der Tabelle entnommen werden.

<table>
<thead>
<tr>
<th>Luftbereich</th>
<th>Einheit</th>
<th>LVE Gitter DN 125</th>
<th>LVE Fußbodenaußluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuluft Wohnbereich</td>
<td>m³/h</td>
<td>35</td>
<td>45</td>
</tr>
<tr>
<td>Zuluft Schlafbereich</td>
<td>m³/h</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Abluft</td>
<td>m³/h</td>
<td>50</td>
<td>-</td>
</tr>
</tbody>
</table>

Die maximale Länge des Kanals hängt von dem Volumenstrom und den verwendeten Bauteilen ab.

Planung

LVE mit Etagenverteilern

Druckverlustberechnung

<table>
<thead>
<tr>
<th>Bauteil</th>
<th>Volumenstrom [m³/h]</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVE Kanal 130 x 52 mm</td>
<td>Pa/m</td>
<td>0,3</td>
<td>0,6</td>
<td>1,0</td>
<td>1,6</td>
<td>2,3</td>
<td>3,1</td>
<td>4,0</td>
<td>5,1</td>
</tr>
<tr>
<td>LVE-Bogen 90°, flach</td>
<td>Pa</td>
<td>0,3</td>
<td>0,8</td>
<td>1,4</td>
<td>2,2</td>
<td>3,1</td>
<td>4,3</td>
<td>5,6</td>
<td>7,0</td>
</tr>
<tr>
<td>LVE-Bogen 90°, hoch</td>
<td>Pa</td>
<td>0,5</td>
<td>1,1</td>
<td>2,0</td>
<td>3,2</td>
<td>4,6</td>
<td>6,2</td>
<td>8,1</td>
<td>10,3</td>
</tr>
<tr>
<td>Übergangsstück 180°</td>
<td>Pa</td>
<td>0,2</td>
<td>0,4</td>
<td>0,6</td>
<td>1,0</td>
<td>1,4</td>
<td>2,0</td>
<td>2,6</td>
<td>3,3</td>
</tr>
<tr>
<td>Fußbodenausschluss mit Gitter</td>
<td>Pa</td>
<td>0,2</td>
<td>0,4</td>
<td>0,8</td>
<td>1,2</td>
<td>1,8</td>
<td>2,4</td>
<td>3,2</td>
<td>4,0</td>
</tr>
</tbody>
</table>

Auslegungskriterien kurz und bündig:

- max. Volumenstrom pro Strang: 45 m³/h
- max. Druckverlust pro Strang: 65 Pa
- nur ein Ventil pro Strang
- bei hohen Druckverlusten Volumenstrom auf 2 Stränge aufteilen
- Maximal 135 m³/h pro Verteiler
- Zuleitung von Lüftungsgerät zum LVE Etagenverteiler in DN 125
- Mindestens 5 m Stranglänge
- Verlegung Etagenübergreifend in Wickelfalzrohr
- Verlegung in der Etage in LVE Flachkanal 130 x 52 mm
- LVE Kanäle, wenn möglich, mit 400 mm Radius biegen, statt Bögen zu Verwenden
- Keine Bodenauslässe im Abluftbereich

Druckverlust LVE Kanal

![Diagramm Druckverlust LVE Kanal](image1)

X: Volumenstrom [m³/h]
Y: Druckverlust [Pa/m]

Strömungsgeschwindigkeit LVE Kanal

![Diagramm Strömungsgeschwindigkeit LVE Kanal](image2)

X: Volumenstrom [m³/h]
Y: Strömungsgeschwindigkeit [m/s]
Planung
LVE mit Etagenverteilern

Planungsbeispiel
Musterhaus

Gebäudedaten

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etage</td>
<td>EG, OG, DG (unbelüftet)</td>
</tr>
<tr>
<td>Gebäudeart</td>
<td>Einfamilienhaus (Mehrgeschossig)</td>
</tr>
<tr>
<td>Wärmeschutz</td>
<td>Neubau nach EnEV 2016</td>
</tr>
<tr>
<td>Personenzahl</td>
<td>4 Personen</td>
</tr>
<tr>
<td>PLZ / Ort</td>
<td>37603 Holzminden</td>
</tr>
<tr>
<td>Gebäudelage</td>
<td>Windschwache Lage (> 3,3 m/s)</td>
</tr>
<tr>
<td>Windschutz</td>
<td>Ungeschützte Lage</td>
</tr>
<tr>
<td>Wohnfläche</td>
<td>180 m²</td>
</tr>
</tbody>
</table>

Erdgeschoss

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Raum</th>
<th>Größe m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gästezimmer</td>
<td>15,51</td>
</tr>
<tr>
<td>2</td>
<td>Diele</td>
<td>12,52</td>
</tr>
<tr>
<td>3</td>
<td>WC</td>
<td>4,00</td>
</tr>
<tr>
<td>4</td>
<td>HWR</td>
<td>12,89</td>
</tr>
<tr>
<td>5</td>
<td>Kochen</td>
<td>15,05</td>
</tr>
<tr>
<td>6</td>
<td>Wohnen/Essen</td>
<td>30,10</td>
</tr>
</tbody>
</table>

Obergeschoss

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Raum</th>
<th>Größe m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kind 1</td>
<td>15,51</td>
</tr>
<tr>
<td>2</td>
<td>Bad</td>
<td>14,44</td>
</tr>
<tr>
<td>3</td>
<td>Ankleide</td>
<td>5,49</td>
</tr>
<tr>
<td>4</td>
<td>Flur</td>
<td>10,68</td>
</tr>
<tr>
<td>5</td>
<td>Kind 2</td>
<td>14,35</td>
</tr>
<tr>
<td>6</td>
<td>Arbeiten</td>
<td>13,76</td>
</tr>
<tr>
<td>7</td>
<td>Schlafen</td>
<td>14,82</td>
</tr>
</tbody>
</table>

Dachgeschoss

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Raum</th>
<th>Größe m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dachboden</td>
<td>106,04</td>
</tr>
</tbody>
</table>
Luftmengenberechnung gemäß DIN 1946 - Teil 6

Außenluftvolumenstrom Nennlüftung

<table>
<thead>
<tr>
<th>Bemessungsgrundlage</th>
<th>Volumenstrom</th>
<th>DIN 1946 – Teil 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Nach Gesamtfläche</td>
<td>194 m³/h</td>
<td>Tabelle 5 (f)</td>
</tr>
<tr>
<td>b) Nach Ablufträumen</td>
<td>165 m³/h</td>
<td>Tabelle 7</td>
</tr>
<tr>
<td>c) Nach Personen</td>
<td>120 m³/h</td>
<td>Tabelle 5 (b)</td>
</tr>
<tr>
<td>Maximalwert (a, b, c)</td>
<td>194 m³/h</td>
<td>Gleichung (11)</td>
</tr>
<tr>
<td>Infiltration</td>
<td>28 m³/h</td>
<td>Gleichung (13)</td>
</tr>
<tr>
<td>Volumenstrom Nennlüftung</td>
<td>166 m³/h</td>
<td>Gleichung (11)</td>
</tr>
</tbody>
</table>

Betriebsstufen Lüftungsanlage

<table>
<thead>
<tr>
<th>Lüftungsart</th>
<th>Berechnet</th>
<th>Gewählt</th>
<th>DIN 1946 – Teil 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luftfeuchtenschutz</td>
<td>50 m³/h</td>
<td>50 m³/h</td>
<td>Gleichung (9)</td>
</tr>
<tr>
<td>Reduzierte Lüftung</td>
<td>116 m³/h</td>
<td>115 m³/h</td>
<td>Gleichung (10)</td>
</tr>
<tr>
<td>Nennlüftung</td>
<td>166 m³/h</td>
<td>165 m³/h</td>
<td>Gleichung (11)</td>
</tr>
<tr>
<td>Intensivlüftung</td>
<td>215 m³/h</td>
<td>215 m³/h</td>
<td>Gleichung (12)</td>
</tr>
</tbody>
</table>

Zuluftbereich

<table>
<thead>
<tr>
<th>Etage</th>
<th>Raumbezeichnung</th>
<th>Grundfläche m²</th>
<th>Raumvolumen m³</th>
<th>Luftmenge</th>
<th>Anzahl Auslässe</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG</td>
<td>Gästezimmer</td>
<td>15,51</td>
<td>38,78</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>EG</td>
<td>Wohnen / Essen</td>
<td>30,10</td>
<td>75,25</td>
<td>65</td>
<td>2</td>
</tr>
<tr>
<td>OG</td>
<td>Schlafen</td>
<td>14,82</td>
<td>37,05</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>OG</td>
<td>Kind 1</td>
<td>15,51</td>
<td>38,78</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>OG</td>
<td>Kind 2</td>
<td>14,35</td>
<td>38,88</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>OG</td>
<td>Arbeiten</td>
<td>13,76</td>
<td>34,40</td>
<td>20</td>
<td>1</td>
</tr>
</tbody>
</table>

Abluftbereich

<table>
<thead>
<tr>
<th>Etage</th>
<th>Raumbezeichnung</th>
<th>Grundfläche m²</th>
<th>Raumvolumen m³</th>
<th>Luftmenge</th>
<th>Anzahl Auslässe</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG</td>
<td>WC</td>
<td>4,00</td>
<td>10,00</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>EG</td>
<td>HWR</td>
<td>12,89</td>
<td>32,23</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>EG</td>
<td>Kochen</td>
<td>15,05</td>
<td>37,63</td>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>OG</td>
<td>Bad</td>
<td>14,44</td>
<td>36,10</td>
<td>45</td>
<td>1</td>
</tr>
<tr>
<td>OG</td>
<td>Ankleide</td>
<td>5,49</td>
<td>13,73</td>
<td>25</td>
<td>1</td>
</tr>
</tbody>
</table>

Überströmbereich

<table>
<thead>
<tr>
<th>Etage</th>
<th>Raumbezeichnung</th>
<th>Grundfläche m²</th>
<th>Raumvolumen m³</th>
<th>Luftmenge</th>
<th>Anzahl Auslässe</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG</td>
<td>Diele</td>
<td>12,52</td>
<td>31,30</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OG</td>
<td>Flur</td>
<td>10,68</td>
<td>26,70</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Die Auswahl eines geeigneten Lüftungsgerätes erfolgt anhand des Nennvolumenstromes und ggf. weiterer produktspezifischer Anforderungen.

<table>
<thead>
<tr>
<th>Gewähltes Lüftungsgerät</th>
<th>Mat.-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWZ 180</td>
<td>232261</td>
</tr>
</tbody>
</table>
Planung

LVE mit Etagenverteilern

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Raum</th>
<th>Lüftung</th>
<th>Volumenstrom m³/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gästezimmer</td>
<td>Zuluft</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Diele</td>
<td>Überström</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>WC</td>
<td>Abluft</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>HWR</td>
<td>Abluft</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>Kochen</td>
<td>Abluft</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>Wohnen / Essen</td>
<td>Zuluft</td>
<td>45</td>
</tr>
<tr>
<td>7</td>
<td>Außenluft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Fortluft</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hinweise zum Lüftungsgerät, Außen- und Fortluft:

Die Außenluftansaugung für die kontrollierte Wohnraumlüftung muss mindestens 2 Meter über Erdgleiche erfolgen. Des Weiteren müssen Kurzschlüsse mit z.B. Fortluft oder Schornsteinen vermieden werden.

Der Außen- und Fortluft Kanal ist mit diffusionsdichter Isolierung vor Schwitzwasser zu schützen.
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Raum</th>
<th>Lüftung</th>
<th>Volumenstrom m³/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kind 1</td>
<td>Zuluft</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>Bad</td>
<td>Abluft</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>Ankleide</td>
<td>Abluft</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>Flur</td>
<td>Überström</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Kind 2</td>
<td>Zuluft</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>Arbeiten</td>
<td>Zuluft</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>Schlafen</td>
<td>Zuluft</td>
<td>30</td>
</tr>
</tbody>
</table>

Hinweise zum Zentralen Verteilsystem LVE

LVE mit Etagenverteilern

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Raum</th>
<th>Lüftung</th>
<th>Volumenstrom m³/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dachboden</td>
<td>Unbelüftet</td>
<td>0</td>
</tr>
</tbody>
</table>
Planung

LVE mit Etagenverteilern

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Etage</th>
<th>Raumbezeichnung</th>
<th>Ventil</th>
<th>Größe m²</th>
<th>Lüftung</th>
<th>Volumenstrom m³/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OG</td>
<td>Arbeiten</td>
<td>Fußbodenauslass</td>
<td>13,76</td>
<td>Zuluft</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>EG</td>
<td>Wohnen/Essen</td>
<td>Fußbodenauslass</td>
<td>30,10</td>
<td>Zuluft</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>EG</td>
<td>Kochen</td>
<td>Deckenventil</td>
<td>15,05</td>
<td>Abluft</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>OG</td>
<td>Kind 2</td>
<td>Fußbodenauslass</td>
<td>15,51</td>
<td>Zuluft</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>OG</td>
<td>Kind 1</td>
<td>Fußbodenauslass</td>
<td>14,35</td>
<td>Zuluft</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>OG</td>
<td>Schlafen</td>
<td>Deckenventil</td>
<td>14,82</td>
<td>Zuluft</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>EG</td>
<td>Gästezimmer</td>
<td>Fußbodenauslass</td>
<td>15,51</td>
<td>Zuluft</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>OG</td>
<td>Bad</td>
<td>Wandventil</td>
<td>14,44</td>
<td>Abluft</td>
<td>45</td>
</tr>
<tr>
<td>9</td>
<td>OG</td>
<td>Ankleide</td>
<td>Wandventil</td>
<td>5,49</td>
<td>Abluft</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>EG</td>
<td>WC</td>
<td>Deckenventil</td>
<td>4,00</td>
<td>Abluft</td>
<td>25</td>
</tr>
<tr>
<td>11</td>
<td>EG</td>
<td>HWR</td>
<td>Deckenventil einstellbar</td>
<td>12,89</td>
<td>Abluft</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Außenluft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Fortluft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Stückliste:

Nach der detaillierten Planung der Lüftungsanlage wird das folgende Material für die Installation benötigt.

Lüftungsgerät und Zubehör

<table>
<thead>
<tr>
<th>Position</th>
<th>Anzahl</th>
<th>Mat.-Nr.</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>232361</td>
<td>LWZ 180</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>236039</td>
<td>FEB, Bedieneinheit</td>
</tr>
</tbody>
</table>

Material Zuluft / Abluft

<table>
<thead>
<tr>
<th>Position</th>
<th>Anzahl</th>
<th>Mat.-Nr.</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>227917</td>
<td>Abluftventil DN 100, Wand/Decke</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>231111</td>
<td>LVE Flexibler Kunststoffkanal, 20m</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>231126</td>
<td>LVE Zentraler Luftverteiler</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>231457</td>
<td>LVE Vertiererabdeckung für Fußbodeneinbau</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>231125</td>
<td>LVE Fußbodenauslass</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>239124</td>
<td>LVE Wandauslass komplett</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>231123</td>
<td>LVE Bogen 90° hoch</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>231120</td>
<td>LVE Übergangsstück Lagewechsel Kanal</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>231113</td>
<td>LVE Befestigungsklammer Kanal, 10 Stück</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>231112</td>
<td>LVE Adapter Rohrverlängerung, 5 Stück</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>231115</td>
<td>LVE Gitter Boden, Design Langloch, Edelstahl</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>239130</td>
<td>Luftgitter, Design Langloch, weiß lackiert, 125 mm</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>161094</td>
<td>Wickelfalzrohr DN 100, 2m</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>161095</td>
<td>Wickelfalzrohr DN 125, 2m</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>161096</td>
<td>Wickelfalzrohr DN 160, 2m</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>159322</td>
<td>T-Stück DN 160 / 125</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>159295</td>
<td>Reduzierstück DN 125 / 100</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>159324</td>
<td>Reduzierstück DN 160 / 125</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>159297</td>
<td>Rohrnippel DN 125</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>159304</td>
<td>Bogen 90° DN 100</td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>159309</td>
<td>Bogen 90° DN 125</td>
</tr>
<tr>
<td>24</td>
<td>4</td>
<td>159329</td>
<td>Bogen 90° DN 160</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>167147</td>
<td>Enddeckel DN 160, Muffe</td>
</tr>
<tr>
<td>26</td>
<td>3</td>
<td>232113</td>
<td>Enddeckel DN 125, Nippel</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>159332</td>
<td>Flexrohr DN 160, ausziehbar auf 5m</td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td>233013</td>
<td>Schalldämpfer rechteckig DN 160, 1m</td>
</tr>
<tr>
<td>29</td>
<td>4</td>
<td>227948</td>
<td>Klebeband, alukaschiert mit Schutzfolie, 10m</td>
</tr>
</tbody>
</table>

Material Außenluft / Fortluft

<table>
<thead>
<tr>
<th>Position</th>
<th>Anzahl</th>
<th>Mat.-Nr.</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>2</td>
<td>234505</td>
<td>Außenwand-Durchführung AWG 160 R</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>239232</td>
<td>LWF DR 160-1 EPP</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>239235</td>
<td>LWF DRB 160-90 EPP</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>159320</td>
<td>LWF N 160</td>
</tr>
</tbody>
</table>
LWF Wickelfalzrohrsystem

Allgemeines

Installation

Um die Übertragung von Schwingungen vom Lüftungsgerät auf das Luftverteilsystem zu verhindern, sollte der Geräteanschluss mit flexiblen Aluminium-Flexrohr erfolgen.

Bei der Versorgung mehrerer Räume durch eine Rohrleitung müssen zur Vermeidung von Geräuschübertragung Telefonieschalldämpfer vorgesehen werden.

In unbeheizten Bereichen wie Keller oder Dachböden müssen die Rohrleitungen mit Mineral- oder Glaswolle wärmegedämmt werden. Außen- und Fortluftleitungen müssen zusätzlich mit einer dampfdichten Ummantelung versehen werden, um eine Durchfeuchtung der Dämmung aufgrund von Kondensatbildung zu verhindern.

Reinigung

Wärmedämmung von Luftleitungen nach DIN 1946-Teil 6

<table>
<thead>
<tr>
<th>Luftart</th>
<th>Wärmewiderstandsfähigkeit</th>
<th>Mindestdämmstärke (mm)</th>
<th>Dachboden (< 10 °C)</th>
<th>Keller (< 18 °C)</th>
<th>Beheizt (> 18 °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuluft</td>
<td>WLS 045</td>
<td>25 mm</td>
<td>10 mm</td>
<td>25 mm</td>
<td></td>
</tr>
<tr>
<td>Zuluft (Luftheizung)</td>
<td>WLS 045</td>
<td>60 mm</td>
<td>40 mm</td>
<td>60 mm</td>
<td></td>
</tr>
<tr>
<td>Abluft</td>
<td>WLS 045</td>
<td>40 mm</td>
<td>25 mm</td>
<td>40 mm</td>
<td></td>
</tr>
<tr>
<td>Außenluft</td>
<td>WLS 045</td>
<td>25 mm *</td>
<td>40 mm *</td>
<td>60 mm *</td>
<td></td>
</tr>
<tr>
<td>Fortluft</td>
<td>WLS 045</td>
<td>20 mm *</td>
<td>30 mm *</td>
<td>25 mm *</td>
<td></td>
</tr>
<tr>
<td>Zuluft</td>
<td>WLS 035</td>
<td>20 mm</td>
<td>10 mm</td>
<td>20 mm</td>
<td></td>
</tr>
<tr>
<td>Zuluft (Luftheizung)</td>
<td>WLS 035</td>
<td>45 mm</td>
<td>30 mm</td>
<td>45 mm</td>
<td></td>
</tr>
<tr>
<td>Abluft</td>
<td>WLS 035</td>
<td>30 mm</td>
<td>20 mm</td>
<td>20 mm</td>
<td></td>
</tr>
<tr>
<td>Außenluft</td>
<td>WLS 035</td>
<td>20 mm *</td>
<td>30 mm *</td>
<td>45 mm *</td>
<td></td>
</tr>
<tr>
<td>Fortluft</td>
<td>WLS 035</td>
<td>15 mm *</td>
<td>25 mm *</td>
<td>20 mm *</td>
<td></td>
</tr>
</tbody>
</table>

* Dampfdiffusionsdichte Isolierung erforderlich
Auslegung

\[\Delta p = L \cdot R + Z \]

- \(p \) Gesamt-Druckverlust Teilstrecke in Pa
- \(L \) Länge der Teilstrecke in m
- \(R \) Rohrreibungsverlust in Pa/m (Diagramm)
- \(Z \) Druckverlust durch Einzelwiderstände in Pa

\[Z = \sum \zeta \cdot \frac{p}{2} \cdot v^2 \]

- \(\zeta \) Summe Widerstandsbeiwerte (Tabelle)
- \(p \) Dichte der Luft (1,2 kg/m³)
- \(v \) Strömungsgeschwindigkeit im Rohr (Diagramm)

Wickelfalzrohr-Bauteil Darstellung

Bogen 90°

\(\zeta \)-Wert: 0,8

Bogen 45°

\(\zeta \)-Wert: 0,4

Reduzierstück (Reduzierung)

\(\zeta \)-Wert: 0,1

Reduzierstück (Erweiterung)

\(\zeta \)-Wert: 0,4

T-Stück (Gabelung)

\(\zeta \)-Wert: 2,6

T-Stück (Vereinigung)

\(\zeta \)-Wert: 0,7

T-Stück (Abzweig)

\(\zeta \)-Wert: 5,0

\(w_2 / w_1 = 0,4 \)	0,9
\(w_2 / w_1 = 0,6 \)	1,2
\(w_2 / w_1 = 0,8 \)	1,5
\(w_2 / w_1 = 1,0 \)	0,9

Überschlägige Werte, nur gültig für unsere Wickelfalzrohre im empfohlenen Volumenstrombereich.

Druckverlust Wickelfalzrohr

\[X \quad \text{Volumenstrom [m³/h]} \]
\[Y \quad \text{Druckverlust [Pa/m]} \]

Strömungsgeschwindigkeit Wickelfalzrohr

\[X \quad \text{Volumenstrom [m³/h]} \]
\[Y \quad \text{Strömungsgeschwindigkeit [m/s]} \]

Die Tabelle zeigt die maximal empfohlenen Luftvolumenströme.

<table>
<thead>
<tr>
<th>Verteilsystem</th>
<th>Nennweite</th>
<th>Volumenstrom max. m³/h</th>
<th>Geschwindigkeit* [m/s]</th>
<th>Druckverlust* [Pa/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wickelfalzrohr - Nebenstrang</td>
<td>DN 100</td>
<td>85</td>
<td>3,0</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td>DN 125</td>
<td>135</td>
<td>3,0</td>
<td>1,2</td>
</tr>
<tr>
<td></td>
<td>DN 160</td>
<td>220</td>
<td>3,0</td>
<td>0,9</td>
</tr>
<tr>
<td></td>
<td>DN 180</td>
<td>375</td>
<td>3,0</td>
<td>0,6</td>
</tr>
<tr>
<td>Wickelfalzrohr - Hauptstrang</td>
<td>DN 100</td>
<td>140</td>
<td>5,0</td>
<td>3,8</td>
</tr>
<tr>
<td></td>
<td>DN 125</td>
<td>220</td>
<td>5,0</td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td>DN 160</td>
<td>360</td>
<td>5,0</td>
<td>2,1</td>
</tr>
<tr>
<td></td>
<td>DN 180</td>
<td>460</td>
<td>5,0</td>
<td>2,0</td>
</tr>
</tbody>
</table>

* bei maximalem Volumenstrom
Luftauslässe

Behaglichkeit und Zugluft

Damit sich durch die kontrollierte Wohnraumlüftung ein behagliches Raumklima ohne Zugerscheinungen einstellt, müssen Typ, Anzahl und Platzierung der Luftauslässe sorgfältig gewählt werden. Das Hauptaugenmerk muss dabei auf die Zuluftführung gelegt werden.

Luftströmungen im Raum werden bei sitzender Tätigkeit je nach Temperatur ab einer Strömungsgeschwindigkeit von ca. 0,2 m/s als zugig empfunden. Daher dürfen die in den technischen Daten der eingesetzten Ventile empfohlenen maximalen Volumenströme nicht überschritten werden. Bei Lüftungsanlagen mit dezentralen Außenwandventilen sorgen integrierte Winddrucksicherungen für eine zugfreie Frischluftzufuhr, die unabhängig von den Windlasten auf der Fassade ist.

Wenn die Zulufttemperaturen mehr als 6 °C unterhalb der Raumtemperatur liegen, werden sie im Allgemeinen als unbehanglich kalt wahrgenommen. Bei zentralen Lüftungsanlagen mit Wärmerückgewinnung tritt die Frischluft mit Temperaturen von ca. 18 °C ein, sodass es zu keiner merklichen Raumauskühlung kommen kann. Auch die zugeführten Luftmengen sind recht gering. Ein kompletter Austausch der Raumluft erfolgt etwa alle 2 bis 2,5 Stunden.

Empfinden von Zugluft

Mittlere Zulufttemperaturen bei Wärmerückgewinnung

<table>
<thead>
<tr>
<th>Außenlufttemperatur [°C]</th>
<th>Mittlere Ablufttemperatur [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>19</td>
</tr>
<tr>
<td>-10</td>
<td>16,1</td>
</tr>
<tr>
<td>-8</td>
<td>16,3</td>
</tr>
<tr>
<td>-6</td>
<td>16,5</td>
</tr>
<tr>
<td>-4</td>
<td>16,7</td>
</tr>
<tr>
<td>-2</td>
<td>16,9</td>
</tr>
<tr>
<td>0</td>
<td>17,1</td>
</tr>
<tr>
<td>2</td>
<td>17,3</td>
</tr>
<tr>
<td>4</td>
<td>17,5</td>
</tr>
<tr>
<td>6</td>
<td>17,7</td>
</tr>
<tr>
<td>8</td>
<td>17,9</td>
</tr>
<tr>
<td>10</td>
<td>18,1</td>
</tr>
</tbody>
</table>

Gültig für Wirkungsgrad WRG 90%, ohne Kondensations- und Lüfterabwärme.

Y Luftgeschwindigkeit [m/s]
X Raumlufttemperatur [°C]
1 „Es zieht“-Bereich
2 „Unbehaglich kalt“-Bereich
3 Wohlfühlbereich
4 „Unbehaglich warm“-Bereich
Dezentrale Zuluftventile

Die optimale Wirksamkeit von Außenwandventilen ergibt sich bei Montage im oberen Bereich der Außenwand links oder rechts neben einem Fenster mit darunter liegendem Heizkörper in ca. 2,0 bis 2,2 m Höhe.

Zugluftrisiko

Quelle: Prof. Dr.-Ing. habil. Wolfgang Richter, Instituts für Energie technik, TU Dresden
Für Außenentemperatur -5 °C (kaltes Wintermittel)

Außenluftvolumenströme dezentrale Zuluftventile

Aus Außenluftvolumenstrom pro Zuluftelement und berechneten Gesamtvolumenstrom der Wohneinheit nach DIN 1946 Teil 6 kann die benötigte Anzahl an dezentralen Zuluftventilen abgeleitet werden.

Beispiel:

Gesamtvolumenstrom Nennlüftung: 150 m³/h
Einsatz ALD 160 (G3-Filter, 8 Pa Differenzdruck): 22 m³/h
Erforderliche Ventilzahl: 6,8 ~ 7 Stück

Die Auslässe sind in Abhängigkeit von Nutzungsart und Raumgröße auf die Wohn- und Schlafräume aufzuteilen. In jedem Zuluftraum muss mindestens ein Außenwanddurchlass installiert werden.

Zentrale Zuluftventile

Positionierungsempfehlung:

Abluftventile

Die Abluftventile sollten möglichst so platziert werden, dass der Raum gut durchströmmt wird. Um Zugescheinungen zu vermeiden, sollten die Abluftventile nicht über Duschen und Badewannen installiert werden. Des Weiteren ist darauf zu achten, dass keine Abluftventile durch Möbel oder andere Gegenstände zugestellt werden.

Die planmäßigen Abluftvolumenströme nach DIN 1946-6 betragen für Küchen, Bäder und Duschen 45 m³/h, für WC und Hauswirtschaftsraum 25 m³/h. Daher ist bei den meisten Bauvorhaben ein Ventil pro Abluftraum ausreichend. Ergeben sich aus der Luftmengenberechnung höhere Volumenströme so müssen die empfohlenen maximalen Luftmengen pro Abluftventil beachtet werden, gegebenenfalls sind mehrere Ventile pro Raum vorzusehen.

Dunstabzugshaube

Eine Dunstabzugshaube darf nicht an ein Lüftungssystem angeschlossen werden.

Wenn dennoch eine Fortluft-Dunstabzugshaube eingesetzt werden soll, muss die Nachströmung von Frischluft sichergestellt werden.

Eine Lüftungsanlage kann keine Dunstabzugshaube ersetzen. Dunstabzugshauben verfügen über deutlich höhere Luftvolumenströme als die gesamte Lüftungsanlage im Gebäude.
Planung
Schall

Allgemeines
In einem Luftkanalsystem ist der Lüfter, zusammen mit den Strömungsgeräuschen der Formstücke eine der Hauptgeräuschquellen.

Konstruktive Maßnahmen haben die mechanischen Lüftergeräusche so reduziert, dass sie vernachlässigbar sind. Störender sind aerodynamische Geräusche, die durch Turbulenzen auftreten, die bei der Durchströmung des Lüfterrades und des Gehäuses unvermeidbar sind.

Es gibt verschiedene Möglichkeiten der Schallausbreitung:
- Abstrahlung über die Gehäusewände in den Aufstellraum
- Körperschall, der in das Fundament geleitet wird. Bei reinen Lüftungsgeräten können Schwingungsdämpfer diesen Anteil auffangen.

Der Luftschall der beiden Lüfter eines zentralen Lüftungsgerätes wird von zwei raumseitigen Schalldämpfern in der Zu- und Abluft reduziert.

Die Komponenten des Luftführungssystems verursachen eigene Strömungsgeräusche. Ihre Schalleistung unterliegt, wie das Lüftergeräusch, der Dämpfung durch das System zwischen Luftführungskomponente und Raum.

Eine weitere Schallquelle sind die Luftauslässe in den Räumen.

Anforderungen an den Schallschutz
Die DIN 1946 - Teil 6 bezieht sich bei den allgemeinen Anforderungen zum Schallschutz auf die Vorgaben der DIN 4109 „Schallschutz im Hochbau“.

Immissionsrichtwerte für Immissionsorte innerhalb von Gebäuden (Auszug aus der TA Lärm 98).

Einzelne kurzzeitige Geräuschspitzen dürfen die Immissionsrichtwerte um nicht mehr als 10 dB(A) überschreiten. Weitergehende baurechtliche Anforderungen bleiben unberührt.

Anlagenplanung
- Die Dimensionierung der Lüftungsleitungen muss gemäß DIN 1946-Teil 6 erfolgen.
- Bei der Installation der Lüftungsleitungen ist darauf zu achten, dass es keine scharfen Kanten im Kanal gibt, die Strömungsgeräusche erzeugen könnten.
- Die Anschlüsse der Lüftungsleitungen am Gerät werden flexibel ausgeführt, um eine Körperschallübertragung zu vermeiden.
- Unmittelbar nach dem Gerät müssen in der Zu- und Abluftleitung Schalldämpfer installiert werden, um den Geräteschall zu minimieren.
- Um eine Übertragung von Telefonschall zu verhindern, müssen an geeigneter Stelle Telefonie- und Schalldämmung installiert werden. Außerdem muss das Leitungsnetz fachgerecht ausgeführt werden.
- Schallübertragung über Außenluftdurchlässe: Bei einer Kombination von Außenluftdurchlässen (ALD) und Fenstern in Außenwänden muss das resultierende Schalldämmaß $R'_{w, res}$ nach der Normenreihe DIN 4109 ermittelt werden. Das geforderte resultierende Schalldämmaß $R'_{w, res}$ darf nicht unterschritten werden.
Zusätzliche Hinweise für Kombigeräte mit integrierter Wärmepumpe

- Bei der Installation muss eine Körperschallübertragung im Gebäude vermieden werden.

- Bei Aufstellung auf einer Holzbalkendecke müssen besondere Maßnahmen zur Vermeidung von Körperschallübertragung getroffen werden.

- Richtet Sie die Außen- und Fortluftöffnungen nicht in Richtung von Fenstern benachbarter Wohn- und Schlafräume.

Aufstellung auf Fundament

1. Betondecke
2. Trittschalldämmung
3. Schwimmender Estrich
4. Estrich aussparen

Aufstellung auf Estrich mit Trittschalldämmung

1. Betondecke
2. Trittschalldämmung
3. Schwimmender Estrich
4. Estrich aussparen
Die grundlegende Anforderung des Brandschutzes ist das Verhindern einer Übertragung von Feuer und Rauch in andere Brandabschnitte eines Gebäudes, wie z. B. andere Geschosse, Treppenräume oder Flucht- und Rettungsweg.

Da Lüftungsanlagen bezüglich der Brand- und Rauchausbreitung eine besondere Bedeutung zukommt, verdient der Brandschutz hierbei besondere Aufmerksamkeit.

Maßnahmen zur Erfüllung des gesetzlich geforderten Brandschutzes sind u. a. die Verwendung feuerwiderstandsfähiger Lüftungsleitungen und Brandschutzklappen. Diese Bauteile benötigen eine allgemeine bauaufsichtliche Zulassung und dürfen nur entsprechend ihrem Verwendbarkeitsnachweis eingebaut werden.

Auch die DIN 1946-6 „Lüftung von Wohnungen“ enthält im Kapitel 5.3.3 einen Verweis auf die Einhaltung der landesrechtlichen Vorschriften.

Bei der Planung einer Lüftungsanlage ist somit zu klären, ob die Anlage in den Geltungsbereich der M-LüAR und der zutreffenden Landesbauordnung fällt.

Anforderungen an den Brandschutz bestehen dabei nicht

- für Gebäude der Gebäudeklassen 1 und 2,
- innerhalb von Wohnungen,
- innerhalb von Nutzungseinheiten mit nicht mehr als 400 m² in nicht mehr als zwei Geschossen.

Somit sind in freistehenden Einfamilienhäusern mit geringer Höhe, d. h. nicht mehr als zwei Vollgeschossen und für Wohngebäude mit nicht mehr als zwei Wohnungen in der Regel keine Anforderungen an den Brandschutz zu beachten. Gleiches gilt auch für Mehrfamilienhäuser, wenn die Lüftungsgeräte und die Lüftungsleitungen innerhalb der Wohneinheiten installiert werden. Allerdings müssen hier die Mündungen der Außen- und Fortluftleitungen in der Fassade besonders beachtet werden.

Wird dagegen in mehrgeschossigen Gebäuden eine zentrale Lüftungsanlage installiert, sind aufgrund der dann für die Lüftungsleitungen erforderlichen Schächte brandschutztchrchnische Einrichtungen erforderlich.

Sind Anforderungen hinsichtlich des Brandschutzes zu erfüllen, so betrifft dies in der Regel nicht nur die Lüftungsanlage, sondern alle gebäudetechnischen Installationen. In einem solchen Fall ist es meistens notwendig, ähnlich des Lüftungskonzeptes, ein Brandschutzkonzept zu erstellen. Im Rahmen des Konzeptes werden die vorgesehenen Lösungen zur Einhaltung der projektspezifischen Schutzziele beschrieben. Diese können ggf. auch über die Anforderungen der Lüftungsanlagen-Richtlinie hinausgehen.
Planung
Feuerstättenbetrieb

Feuerstättenbetrieb

Ofen/Kamin

Durch den thermischen Auftrieb des Schornsteins (Kaminzug) entsteht eine Druckdifferenz zwischen dem Aufstellraum und der Feuerstätte. Aufgrund dieses Druckunterschieds muss einerseits der Feuerstätte die erforderliche Verbrennungsluft zugeführt und andererseits die entstehenden Rauchgase sicher abgeführt werden.

Der Betrieb eines Lüftungsgerätes darf die Funktion des Schornsteins nicht negativ beeinflussen.

Der Betrieb eines Abluftgerätes (z. B. LWA 100) wirkt dem Kaminzug in jedem Fall entgegen. Durch die Dimensionierung und die Anzahl der Außenluftlurchlässe muss der Differenzdruck zwischen dem Aufstellraum der Feuerstätte und der Außenumgebung auf den maximal zulässigen Wert von 4 Pa begrenzt werden.

Für die Installation einer Festbrennstoff-Feuerstätte ist immer eine Genehmigung des zuständigen Schornsteinfegers erforderlich. Wir empfehlen deshalb den Schornsteinfeger bereits frühzeitig mit in die Planung einzubeziehen.

Raumluftunabhängige Feuerstätten müssen die Anforderungen des DIBt (Deutsches Institut für Bautechnik) erfüllen, insbesondere hinsichtlich der Verbrennungsgüte und der Dichtigkeit gegenüber dem Aufstellraum.

Eine alleinige separate Verbrennungsluftzufuhr über einen Luft-Abgas-Schornstein oder von außen reicht nicht für einen raumluftunabhängigen Betrieb aus!

Kann die Feuerstätte ihre raumluftunabhängige Betriebsweise mit einer DIBt-Zulassung nachweisen, so sind für den gemeinsamen Betrieb mit einem Wohnungslüftungsgerät in der Regel keine weiteren Maßnahmen erforderlich. Die Beurteilung erfolgt durch den Schornsteinfeger.

Soll eine raumluftabhängige Feuerstätte mit einem Lüftungsgerät betrieben werden, so ist in jedem Fall der Einbau einer geprüften Sicherheitseinrichtung erforderlich. Außerdem muss die Feuerstätte über einen separaten Auspuffanschluss verfügen. Bei einer raumluftabhängigen Feuerstätte muss zwischen einem wechselseitigen und einem gemeinsamen Betrieb von Lüftungsgerät und Feuerstätte unterschieden werden.

Ein wechselseitiger Betrieb benötigt eine geprüfte Sicherheitseinrichtung, die gewährleistet, dass das Lüftungsgerät und die Feuerstätte nicht gleichzeitig betrieben werden können (z. B. Temperaturmessung). Bei Inbetriebnahme der Feuerstätte wird das Lüftungsgerät abgeschaltet bzw. kann nicht in Betrieb gehen.

Diese Betriebsweise ist nur für Geräte zu empfehlen, die keine über die Lüftung hinausgehenden Funktionen der Haustechnik abdecken.

Beim gemeinsamen Betrieb muss durch die geprüfte Sicherheitseinrichtung gewährleistet werden, dass der Feuerstätte immer genügend Verbrennungsluft zugeführt wird und keine Rauchgase in den Aufstellraum gelangen. Dies kann z. B. durch eine Überwachung des Schornsteinzuges erfolgen (Differenzdrucküberwachung).

Im Störfall schaltet die Sicherheitseinrichtung das Lüftungsgerät bzw. die Lüftungsfunktion des Gerätes ab.

Diese Betriebsweise ist speziell für Geräte, die neben der Lüftung noch weitere Funktionen der Haustechnik (Heizung, WW-Bereitung) abdecken, zu empfehlen.

Bei der Auswahl der Sicherheitseinrichtung für einen gemeinsamen Betrieb von Lüftungsgerät und Feuerstätte müssen folgende Punkte berücksichtigt werden:

- Überwachung des Differenzdruckes zwischen dem Verbindungstück zum Schornstein und dem Aufstellraum der Feuerstätte, nicht zwischen Aufstellraum und Außenumgebung oder zwischen Installationsopt des Lüftungsgerätes und Außenumgebung.
- Möglichkeit zur Anpassung des Abschaltwertes für den Differenzdruck an den Mindestzugbedarf der Feuerstätte.
- Potentialfreier Kontakt zum Abschalten des Lüftungsgerätes bzw. der Lüftungsfunktion/Wärmepumpenfunktion bei Integralgeräten.
- Anschlussmöglichkeit einer Temperaturmessung zum Aktivieren der Differenzdrucküberwachung nur bei Betrieb der Feuerstätte, um Fehlabschaltungen durch Umwelteinflüsse zu vermeiden.

Fazit:
Soll ein Lüftungsgerät zusammen mit einer Feuerstätte (Kaminofen) betrieben werden, ist die Auswahl einer raumluftunabhängigen Feuerstätte zu empfehlen.

In jedem Fall muss die Installation der Feuerstätte vom zuständigen Schornsteinfeger genehmigt werden. Es ist deshalb dringend zu empfehlen, den Schornsteinfeger bereits frühzeitig in die Planung einzubeziehen.
Lüftung

Zentrale Zu- und Abluft mit Wärmerückgewinnung

Lüftung und Trinkwassererwärmung

Abluft

Beispielabbildung mit Standgerät

Abluftanlagen mit Wärmerückgewinnung nutzen die in der Abluft enthaltene Energie zur Trinkwassererwärmung über einen Wärmepumpen-Kältekreis.

Die Geräte werden üblicherweise im Hauswirtschaftsraum installiert. Die Zuluftversorgung erfolgt über geeignete Außenluftdurchlässe in den entsprechenden Bereichen.

Beispielabbildung mit wandhängenden Geräten

Besonders in Wohnungen, in denen das Badezimmer z. B. zentral und ohne Fenster gelegen ist, eignet sich das wandhängende Lüftungsgerät für die Kombination von kontrollierter Wohnungs- lüftung und Trinkwassererwärmung. Die verbrauchte und feuchte Abluft aus Badezimmer und Küche wird genutzt, um den Warmwasserbedarf abzudecken.
Lüftung, Trinkwassererwärmung und Heizung
Zentrale Zu- und Abluft

Beispielabbildung mit Integralgerät

Lüftung, Trinkwassererwärmung, Heizung und Kühlung
Zentrale Zu- und Abluft

Beispielabbildung mit Integralgerät

Die Komfortvariante der Integralgeräte verfügt neben den Funktionen Lüften, Heizen und Trinkwasser erwärmen zusätzlich über eine Kühlfunktion. Thermische Solarkollektoren können für die Trinkwarmwasserbereitung und zur Heizungsunterstützung einge bunden werden.
Beispielabbildung mit dezentralen Lüftungsgeräten

Die Zulufträume werden über Geräte mit Wärmerückgewinnung, die paarweise eingesetzt und im Gegentaktbetrieb arbeiten, versorgt. Die Geräte werden in die Wand eingebaut und im Bereich der Fenster angeordnet.

Ergänzend sorgen autark arbeitende Abluftgeräte unabhängig voneinander für die Abfuhr von feuchtigkeits- und geruchsbela­steter Luft aus Räumen wie Bad und Küche.
Normgerechte Lüftung
LWE 40, LA 50, LA 60 Trend, LA 60 Plus

Die für die Auslegung von Wohnungslüftungsanlagen relevante Norm ist die DIN 1946-6. Hier sind die Anforderungen an die Planung für Einrichtungen zur freien Lüftung und für ventilatorgestützte Lüftungssysteme festgelegt.

Wird der für den Feuchteschutz erforderliche Volumenstrom nicht erreicht, ist eine lüftungstechnische Maßnahme notwendig.

Sind in einer Wohnung innenliegende Bäder und Toilettenräume vorhanden, ist zusätzlich zur DIN 1946-6 auch DIN 18017-3 zu beachten. Diese Norm gilt speziell nur für ventilatorgestützte Abluftsysteme und legt u.a. die Anforderungen an die Auslegung und Betriebsweise in fensterlosen Räumen fest.

Die DIN 18017-3 gilt für ventilatorgestützte Entlüftungsanlagen von Bädern und Toilettenräumen ohne Außenfenster, in Wohnungen und in ähnlichen Aufenthaltsbereichen.

Im Sinne der DIN 1946-6 ist eine lüftungstechnische Maßnahme erfüllt, wenn z. B. für die Lüftung von fensterlosen Räumen nach DIN 18017-3, der Luftvolumenstrom zum Feuchteschutz erreicht wird und alle Räume der Nutzungseinheit hinreichend gleichmäßig durchströmt werden.

Erfolgt die Planung des Lüftungskonzeptes nach DIN 1946-6, ist die DIN 18017-3 sofort und parallel erfüllt.

Lüftungstechnische Maßnahme erforderlich?

- **ja**
 - fensterlose Räume?
 - nein: DIN 1946-6
 - ja: DIN 18017-3

- **nein**
 - keine Anforderungen
 - ja: DIN 18017-3

und DIN 1946-6
Systemvorstellung

Integralgeräte mit zentraler Zuluft
Produktübersicht
Produktübersicht

Zentrale Luftführung

Gerätytypen und Einsatzzwecke

<table>
<thead>
<tr>
<th></th>
<th>LWZ 5 CS Premium</th>
<th>LWZ 8 CS Premium</th>
<th>LWZ 5 S Plus</th>
<th>LWZ 5 S Trend</th>
<th>LWZ 8 S Trend</th>
<th>LWZ 5 S Smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funktion Lüftung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Funktion Heizen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funktion Kühlten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funktion Warmwasser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funktion Solar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wärmequelle</td>
<td>Luft</td>
<td>Luft</td>
<td>Luft</td>
<td>Luft</td>
<td>Luft</td>
<td>Luft</td>
</tr>
<tr>
<td>Einsatzbereich Modernisierung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einsatzbereich Neubau</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Hausgröße Neubau</td>
<td>m²</td>
<td><240</td>
<td><240</td>
<td><240</td>
<td><240</td>
<td><240</td>
</tr>
<tr>
<td>Aufstellungsort</td>
<td>Innen</td>
<td>Innen</td>
<td>Innen</td>
<td>Innen</td>
<td>Innen</td>
<td>Innen</td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Invertertechnologie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Planung

Bedingungen am Aufstellort
Der Raum, in dem das Gerät installiert werden soll, muss folgende Bedingungen erfüllen:
- frostfrei
- tragfähiger Fußboden
- Der Untergrund muss waagerecht, eben, fest und dauerhaft sein.
- Bei Aufstellung des Gerätes in einem Heizraum muss sicher gestellt werden, dass der Betrieb des zweiten Heizgerätes nicht beeinträchtigt wird.

Schallschutz für Nachbarräume des Aufstellraumes

Wir empfehlen für die Wand zwischen Aufstellraum und Wohnraum eine Wandaufbauten, die das folgende Schalldämmmaß sicherstellt:
- 45 dB(A) für angrenzende Wohn- und Schlafräume
- 50 dB(A) für andere Räume

Türen sollten der Schallschutzklasse SK 3 entsprechen.

Steh das Gerät mit der Rückseite zum Nachbarraum, empfehlen wir das folgende Schalldämmmaß:
- 55 dB(A) für angrenzende Wohn- und Schlafräume
- 50 dB(A) für andere Räume

Ein Durchgang zum Nachbarraum wird nicht empfohlen.

Der Fußboden muss zwischen Aufstell- und Wohnraum sorgfältig entkoppelt werden. Achten Sie darauf, dass auf oder in der Wand keine Rohrleitungen verlegt werden und die Luftkanäle entkoppelt sind.

Hinweis
Beim Betrieb im Rohbau ohne Türen kann das Gerät laut wirken. Dies liegt an der fehlenden Schalldämpfung durch Einrichtungsgegenstände und sollte bei bezogenem Gebäude nicht mehr auftreten.

Schalldämmmaß 45 dB(A)
Ein Schalldämmmaß von 45 dB(A) erreichen Sie z. B. durch eine Leichtbauwand aus Holzständer mit einem Querschnitt von 60 x 60 mm und Volldämmung. Die Wand muss beidseitig beplankt werden mit je einer 12,5-mm-Gipsfaserplatte und einer 10-mm-Gipsfaserplatte.

Untergrund und Schallübertragung

Um die Übertragung von Vibrationen und Schall über den Untergrund zu verhindern, muss die Geräte-Aufstellfläche vom Estrich getrennt werden.

Aufstellung auf einem Fundament

1 Betondecke
2 Trittschalldämmung
3 Schwimmender Estrich
4 Estrich aussparen

Schalldämmmaß 55 dB(A)
Ein Schalldämmmaß von 55 dB(A) erreichen Sie z. B. durch eine Leichtbauwand aus Holzständer mit einem Querschnitt von 60 x 60 mm und Vordämmung. Die Wand muss beidseitig beplankt werden mit je einer 12,5-mm-Gipsfaserplatte und einer 10-mm-Gipsfaserplatte.
Planung
Integralgeräte mit zentraler Zuluft

Aufstellung auf Estrich mit Trittschalldämmung

1 Betondecke
2 Trittschalldämmung
3 Schwimmender Estrich
4 Estrich aussparen

Platzbedarf
Um die Frontblende ungehindert öffnen zu können, muss vor dem Gerät ein entsprechender Freiraum eingeplant werden.

Zum ungehinderten Aufstellen des Gerätes muss die Raumhöhe bei Verwendung einer Umlenkhaube beachtet werden.

Wenn ein Erdwärmeübertrager oder eine Solaranlage vorgeplant ist, wird ein größerer Wandabstand benötigt.

Solarkollektoren

Elektroanschluss

Über eine vieradrige elektrische Leitung kann das Gerät mit der Fernbedienung komplett vom Wohnraum aus bedient werden.

Sondertarife

Außen- und Fortluftführung durch Außenwände

Wenn der Mindestabstand von Lufteintritts- und Luftaustrittsöffnung nicht eingehalten werden kann, muss eine Trennung der Luftpolumenströme bauseits sichergestellt werden, z. B. durch eine geeignete Mauer.

Der Maximalwert von 50 Pa für die verfügbare externe Pressung (Außen-/Fortluft) muss eingehalten werden.

Der Einsatz von geeigneten Schalldämpfern in der Fortluftleitung führt zu einer weiteren Reduzierung des Schallpegels.

Zu- und Abluftventilator

Kondensat
Anschluss an das Lüftungssystem

Die Lüftungsanschlüsse am Gerät müssen mit flexiblen Rohren ausgeführt werden, um eine geringe Schallübertragung bei einfacher Montage zu gewährleisten.

Hydraulischer Anschluss

Die schwingungsarme Konstruktion der Wärmepumpe vermeidet Körperschall-Übertragungen weitgehend. Vor- und Rücklauf sind an die dafür vorgesehenen Kupferrohre mit Winkel-Steckverbindern anzuschließen.

Das Gerät ist mit einer drehzahlgeregelten Effizienzpumpe ausgestattet und kann direkt an das Heizungssystem angeschlossen werden. Der Anschluss an die Wärmenutzungsanlage muss entsprechend den Planungsunterlagen ausgeführt werden. Nutzen Sie die bei den verschiedenen Geräten aufgeführten Standardschaltungen oder unseren Schaltplanfinder im Internet.

Vor dem Anschluss an die Wärmepumpe muss die Heizungsanlage gründlich gespült und auf Dichtheit geprüft werden.

Auf den richtigen Anschluss des Heizungsvorlaufs und -rücklaufs sowie korrekte Rohrquerschnitte muss geachtet werden.

Der Mindestvolumenstrom muss in jedem Betriebszustand der Anlage sichergestellt werden, z. B. mit einer hydraulischen Weiche.

Beachten Sie die Hinweise in der Bedienungs- und Installationsanleitung des Gerätes.

Bezüglich der sicherheitstechnischen Ausrüstung sind die zutreffenden Normen und Richtlinien zu beachten.

Umwälzpumpe

Entsprechend der Auslegung des Wärmeverteilungs-Systems wird der Heizungs-Volumenstrom an der Regeleinheit der integrierten Umwälzpumpe eingestellt.

Membran-Ausdehnungsgefäß

Zweiter Heizkreis

Mit der integrierten Regelung ist die Ansteuerung eines zweiten Heizkreises mit abweichender Vorlauftemperatur möglich. Der zweite Heizkreis muss bauseits mit einem Motor-Mischventil und einer Umwälzpumpe sowie einem weiteren Vorlaußfilter ausge stattet werden.

Anlegefühler für zweiten Heizkreis

Der Anlegefühler für den zweiten Heizkreis wird am Vorlauf des zweiten Heizkreises positioniert und mit einem Spannband befestigt.

Außentemperaturfühler

Im Lieferumfang des Gerätes ist ein Außentemperaturfühler enthalten. Der Außentemperaturfühler ist an einer Nord- oder Nordost-Wand hinter einem beheizten Raum etwa 2,5 m vom Erdboden und 1 m seitlich von Fenstern und Türen anzubringen. Der Außentemperaturfühler soll der Witterung frei und ungeschützt ausgesetzt sein.

Zirkulationsanschluss

Eine Warmwasserzirkulation ist aus energetischen Gründen nicht zu empfehlen. Ist aufgrund ungünstiger Leitungsführung dennoch eine Warmwasserzirkulation erforderlich, muss diese in jedem Fall normgerecht, d. h. zeit- und temperaturgesteuert ausgeführt werden.
Planung

Integralgeräte mit zentraler Zuluft

Isometrie

1 Flexibler Anschluss
2 Außenluft
3 Wanddurchführung
4 Fortluft
5 Schalldämpfer
6 Zuluft
7 Abluft
Aufstellzeichnungen
Anschluss Außenluft über Erdwärmeübertrager

≥300
≥2°

D0000019266

1 Filterbox

Anschluss Außenluft Wohnungslüftung optional

≥300

D0000019267

1 Filterbox

Hinweis bei separater Außenluftansaugung durch den Anschluss „Außenluft Wohnungslüftung opt.“

Um eine erhöhte Raumluftqualität gewährleisten zu können, muss bei der Installation des Gerätes im Kellergeschoss sichergestellt werden, dass die Außenluft der kontrollierten Wohnungslüftung mit möglichst geringer Belastung, z. B. durch Keime, Staub und Schnee, angesaugt wird.

Kurzschlüsse mit der Fortluft oder anderen Systemen, z. B. Schornstein und Ablufttrockner, müssen vermieden werden.

Eine Ansaugung direkt über Erdgleiche sowie in engen Gruben und Schächten ist nicht zulässig. Wir empfehlen, die Außenluft für die Wohnungslüftung durch den Anschluss „Außenluft Wohnungslüftung opt.“ getrennt von der Außenluft für die Wärmepumpe, mindestens 1 m über Erdniveau anzusaugen.

Bei einer separaten Ansaugung der Außenluft für die Wohnungslüftung muss der geräteinterne Außenluftfilter entfernt werden. In diesem Fall muss ein Filter, mindestens mit der Filterklasse G1, in der separaten Außenluftleitung als Ersatz installiert werden.

Dieser Filter ist nicht im Lieferumfang des Geräts enthalten und muss separat bestellt werden.
Wasserqualität

Die Wasserqualität von Heizungsanlagen ist in Deutschland in der VDI 2035 geregelt.

Um Schäden durch Steinbildung zu vermeiden, müssen die in den Kapiteln „Technische Daten“ genannten Grenzwerte für das Füllwasser eingehalten werden. Dazu kann es erforderlich sein, das Füllwasser ggf. durch Entharnten oder Entsalzen aufzubereiten.

Acht bis 12 Wochen nach der Inbetriebnahme sowie im Rahmen einer jährlichen Wartung muss die Wasserbeschaffenheit erneut geprüft werden.

Auslegung für die Erstbefüllung der Anlage

Die Patronenanzahl für die Erstbefüllung einer Anlage wird nach folgender Formel berechnet:

\[
P_{ANZ} = \frac{V_{ANL} \times (d_{HIST} - d_{HSOLL})}{K_{WWM}}
\]

\[
V_{WWM} = \frac{K_{WWM}}{d_{H}}
\]

Beispielberechnung für die Weichwassermenge:

\[
K_{WWM} = 6000 \text{ l } ^{o} \text{dH}
\]

\[
d_{HIST} = 20 \text{ } ^{o} \text{dH}
\]

\[
d_{HSOLL} = 3 \text{ } ^{o} \text{dH}
\]

\[
V_{WWM} = \frac{6000 \text{ l } ^{o} \text{dH}}{20 \text{ } ^{o} \text{dH}} = 300 \text{ l}
\]

Für die Lebensdauer einer Patrone wird eine Patrone benötigt.

Lebensdauer einer Patrone

Für die Lebensdauerberechnung einer Patrone werden die erreichbare Weichwassermenge und die Nachfüllmenge zu Grunde gelegt. Die jährliche Nachfüllmenge wird mit 10% des Anlagenvolumens angenommen.

Die Weichwassermenge berechnet sich nach folgender Formel.

\[
V_{WWM} = \frac{K_{WWM}}{d_{H}}
\]

Beispielberechnung Lebensdauer:

\[
V_{ANL} = 200 \text{ l}
\]

\[
V_{WWM} = 300 \text{ l}
\]

 \[
\text{Lebensdauer } (a) = \frac{V_{WWM}}{V_{ANL} \times 0.1}
\]

Die Weichwassermenge eines Patrone beträgt 300 l.

Beispielberechnung Lebensdauer:

\[
V_{ANL} = 200 \text{ l}
\]

\[
V_{WWM} = 300 \text{ l}
\]

 \[
\text{Lebensdauer } (a) = \frac{300 \text{ l}}{200 \text{ l} \times 0.1}
\]

Beispielrechnung Lebensdauer:

\[
V_{ANL} = 200 \text{ l}
\]

\[
V_{WWM} = 300 \text{ l}
\]

\[
\text{Lebensdauer } (a) = \frac{300 \text{ l}}{200 \text{ l} \times 0.1}
\]

Beispielrechnung Lebensdauer:

\[
V_{ANL} = 200 \text{ l}
\]

\[
V_{WWM} = 300 \text{ l}
\]

\[
\text{Lebensdauer } (a) = \frac{300 \text{ l}}{200 \text{ l} \times 0.1}
\]

Beispielrechnung Lebensdauer:

\[
V_{ANL} = 200 \text{ l}
\]

\[
V_{WWM} = 300 \text{ l}
\]

\[
\text{Lebensdauer } (a) = \frac{300 \text{ l}}{200 \text{ l} \times 0.1}
\]

Beispielrechnung Lebensdauer:

\[
V_{ANL} = 200 \text{ l}
\]

\[
V_{WWM} = 300 \text{ l}
\]

\[
\text{Lebensdauer } (a) = \frac{300 \text{ l}}{200 \text{ l} \times 0.1}
\]

Beispielrechnung Lebensdauer:

\[
V_{ANL} = 200 \text{ l}
\]

\[
V_{WWM} = 300 \text{ l}
\]

\[
\text{Lebensdauer } (a) = \frac{300 \text{ l}}{200 \text{ l} \times 0.1}
\]

Beispielrechnung Lebensdauer:

\[
V_{ANL} = 200 \text{ l}
\]

\[
V_{WWM} = 300 \text{ l}
\]

\[
\text{Lebensdauer } (a) = \frac{300 \text{ l}}{200 \text{ l} \times 0.1}
\]

Beispielrechnung Lebensdauer:

\[
V_{ANL} = 200 \text{ l}
\]

\[
V_{WWM} = 300 \text{ l}
\]

\[
\text{Lebensdauer } (a) = \frac{300 \text{ l}}{200 \text{ l} \times 0.1}
\]

Beispielrechnung Lebensdauer:

\[
V_{ANL} = 200 \text{ l}
\]

\[
V_{WWM} = 300 \text{ l}
\]

\[
\text{Lebensdauer } (a) = \frac{300 \text{ l}}{200 \text{ l} \times 0.1}
\]

Beispielrechnung Lebensdauer:

\[
V_{ANL} = 200 \text{ l}
\]

\[
V_{WWM} = 300 \text{ l}
\]

\[
\text{Lebensdauer } (a) = \frac{300 \text{ l}}{200 \text{ l} \times 0.1}
\]

Beispielrechnung Lebensdauer:

\[
V_{ANL} = 200 \text{ l}
\]

\[
V_{WWM} = 300 \text{ l}
\]

\[
\text{Lebensdauer } (a) = \frac{300 \text{ l}}{200 \text{ l} \times 0.1}
\]
Auslegung

Grundlage für die Auslegung ist die Norm-Heizlast nach DIN EN 12831.

Aus diesem Leistungsverhalten heraus ergibt sich im Allgemeinen ein wirtschaftlicher Einsatzbereich, sofern die Leistungsgrenzen der Geräte nicht überschritten werden. Dieser Einsatzbereich setzt einen durchschnittlichen in Deutschland üblichen Wärmepumpen-Tarif voraus.

Bei dem Gerät kann je nach Standort und Heizungssystem auch eine höhere Heizlast noch wirtschaftlich sein.

Dabei erfolgt die Auslegung nach dem Bivalenzpunkt. Auf keinen Fall darf die Heizlast die maximale Heizleistung im Auslegungsfall überschreiten.

Es müssen zusätzlich folgende Punkte beachtet werden:

- Der Deckungsanteil der Wärmepumpe sinkt mit steigender Heizlast und sinkender Norm-Auslegungstemperatur, das heißt der elektrische Direkt-Heizanteil steigt.
- In der ersten Heizsaison ist aufgrund des Trockenheiz-Effektes mit erhöhtem Energieverbrauch zu rechnen.
- Pro °C höherer Raumtemperatur werden ca. 6 % mehr Energie verbraucht.
- Der Deckungsanteil für die Warmwasserbereitung ist stark abhängig vom Wasserverbrauch und von der eingestellten Warmwassertemperatur. Z. B. bei einer Warmwassertemperatur von 45 °C wird die Warmwasserbereitung vollständig durch die Wärmepumpe gedeckt.
- Bei Auslegung im Grenzbereich muss eine Energie-Kostenbetrachtung durchgeführt werden.

Ein wirtschaftlicher Betrieb ist zumeist gegeben, wenn sich ein Bivalenzpunkt unter -5 °C einstellt, da die Wärmepumpe dann einen Deckungsanteil von mindestens 95 % erreicht.

Beispiel:

Norm-Heizlast: 9,0 kW; Norm-Außentemperatur: -14 °C; Vorlauftemperatur: 35 °C.

Ergebnis abgelesen aus dem Diagramm:

Der sich ergebende Bivalenzpunkt beträgt -8 °C. Das Gerät kann wirtschaftlich betrieben werden.
Kurz und bündig

- Kompaktes Gerät mit den Funktionen: Lüften, Heizen, Warmwasserbereitung und Kühlern
- Matrixdisplay mit "Touch Wheel" für intuitive Bedienung
- Integrierte Hocheffizienzpumpe für energiesparende Wärmeverteilung
- Integrierter Warmwasserspeicher für hohen Warmwasserkomfort
- Ergonomisch angeordnete Bedieneinheit zur einfachen Bedienung

Sicherheit und Qualität

- Eingezertifizierter Heizkörper mit Feuchteschutz
- Absenkung des Luftvolumenstroms bei zu geringer Luftfeuchtigkeit
- Passivkühlung
- Trockenheizprogramm
- Integrierte Bedieneinheit, Fernbedieneinheit mit Feuchtesensor optional
- Internetservice Gateway (ISG) mit KNX Option und PV-Optimierung optional

ANWENDUNG:

AUSSTATTUNG/KOMFORT:

EFFIZIENZ:
Hohe Effizienz durch bedarfsabhängige Regelung des Inverter-Verdichters. Energieeffizienz durch konstanten Volumenstromlüfter.

INSTALLATION:
Die Anschlüsse für Außenluft, Zuluft, Fortluft und Abluft befinden sich auf der Oberseite des Gerätes. Stabiles Stahlblechgehäuse in modernem, prämierten Design.

Arbeitsweise

Weiteres Zubehör

- FES Komfort
- ISG web
Technische Daten

<table>
<thead>
<tr>
<th></th>
<th>LWZ 5 CS Premium</th>
<th>LWZ 8 CS Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärmeleistungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wärmeleistung bei A-7/W35 (EN 14511) kW</td>
<td>5,50</td>
<td>8,34</td>
</tr>
<tr>
<td>Wärmeleistung bei A2/W35 (EN 14511) kW</td>
<td>5,16</td>
<td>5,16</td>
</tr>
<tr>
<td>Wärmeleistung bei A7/W35 (EN 14511) kW</td>
<td>4,40</td>
<td>4,40</td>
</tr>
<tr>
<td>Wärmeleistung Not-/Zusatzheizung kW</td>
<td>2,9 / 5,8 / 8,8</td>
<td>2,9 / 5,8 / 8,8</td>
</tr>
<tr>
<td>Kühlleistung bei A35/W7 kW</td>
<td>2,40</td>
<td>2,69</td>
</tr>
<tr>
<td>Wärmeleistung max. kW</td>
<td>14,3</td>
<td>17,2</td>
</tr>
<tr>
<td>Leistungsaufnahmen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leistungsaufnahme bei A-7/W35 (EN 14511) kW</td>
<td>3,19</td>
<td>3,19</td>
</tr>
<tr>
<td>Leistungsaufnahme bei A2/W35 (EN 14511) kW</td>
<td>1,38</td>
<td>1,38</td>
</tr>
<tr>
<td>Leistungsaufnahme bei A7/W35 (EN 14511) kW</td>
<td>0,93</td>
<td>0,93</td>
</tr>
<tr>
<td>Leistungszahlen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leistungszahl bei A-7/W35 (EN 14511)</td>
<td>2,61</td>
<td>2,61</td>
</tr>
<tr>
<td>Leistungszahl bei A2/W35 (EN 14511)</td>
<td>3,74</td>
<td>3,74</td>
</tr>
<tr>
<td>Leistungszahl bei A7/W35 (EN 14511)</td>
<td>4,74</td>
<td>4,74</td>
</tr>
<tr>
<td>Schallangaben</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schallleistungspegel (EN 12102) dB(A)</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Schallleistungspegel Volllast (EN 12102) dB(A)</td>
<td>59</td>
<td>59</td>
</tr>
<tr>
<td>Einsatzgrenzen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einsatzgrenze Wärmequelle min. °C</td>
<td>-20</td>
<td>-20</td>
</tr>
<tr>
<td>Einsatzgrenze Wärmequelle max. °C</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Max. Druckverlust Außenluft Pa</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Aufstellraum Volumen min. m³</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Warmwasser-Temperatur mit Wärmepumpe bei A2 °C</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Hydraulische Daten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speichervolumen l</td>
<td>235</td>
<td>235</td>
</tr>
<tr>
<td>Energetische Daten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energieeffizienzklasse Wärmepumpe W55 A++</td>
<td>A++</td>
<td></td>
</tr>
<tr>
<td>Energieeffizienzklasse Warmwasserbereitung bei Lastprofil XL A (XL)</td>
<td>A (XL)</td>
<td></td>
</tr>
<tr>
<td>Energieeffizienzklasse Warmwasserbereitung (Lastprofil), durchschnittliches Klima A+++</td>
<td>A+++</td>
<td></td>
</tr>
<tr>
<td>Elektrische Daten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leistungsaufnahme Lüfter max. W</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>Leistungsaufnahme Lüfter nenn. W</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Leistungsaufnahme Lüfter W</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Leistungsaufnahme Umwälzpumpe W</td>
<td>< 45</td>
<td>< 45</td>
</tr>
<tr>
<td>Leistungsaufnahme max. ohne Not-/Zusatzheizung kW</td>
<td>5,3</td>
<td>5,3</td>
</tr>
<tr>
<td>Absicherung Not-/Zusatzheizung A 3 x B 16</td>
<td>3 x B 16</td>
<td></td>
</tr>
<tr>
<td>Absicherung Verbücher max. A 1 x B 25</td>
<td>1 x B 25</td>
<td></td>
</tr>
<tr>
<td>Absicherung Verbücher A 1 x B 16</td>
<td>1 x B 25</td>
<td></td>
</tr>
<tr>
<td>Absicherung WP-Lüfter A 1 x B 16</td>
<td>1 x B 16</td>
<td></td>
</tr>
<tr>
<td>Absicherung Steuerung A B 16</td>
<td>B 16</td>
<td></td>
</tr>
<tr>
<td>Nennspannung Not-/Zusatzheizung V</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Nennspannung Verbücher V</td>
<td>230</td>
<td>230</td>
</tr>
<tr>
<td>Nennspannung WP-Lüfter V</td>
<td>230</td>
<td>230</td>
</tr>
<tr>
<td>Nennspannung Steuerung V</td>
<td>230</td>
<td>230</td>
</tr>
<tr>
<td>Phasen Verbücher</td>
<td>1/N/PE</td>
<td>1/N/PE</td>
</tr>
<tr>
<td>Phasen WP-Lüfter</td>
<td>1/N/PE</td>
<td>1/N/PE</td>
</tr>
<tr>
<td>Phasen Steuerung</td>
<td>1/N/PE</td>
<td>1/N/PE</td>
</tr>
<tr>
<td>Frequenz Hz</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Stromaufnahme gesamt A</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Anlaufstrom (mit/ohne Anlaufstrombegrenzer) A</td>
<td>-7</td>
<td>-7</td>
</tr>
<tr>
<td>Phasen Not-/Zusatzheizung</td>
<td>3/N/PE</td>
<td>3/N/PE</td>
</tr>
</tbody>
</table>
LWZ 5/8 CS Premium

<table>
<thead>
<tr>
<th>Ausführungen</th>
<th>LWZ 5 CS Premium</th>
<th>LWZ 8 CS Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kältemittel</td>
<td>R410 A</td>
<td>R410 A</td>
</tr>
<tr>
<td>Füllmenge Kältemittel</td>
<td>kg</td>
<td>2,95</td>
</tr>
<tr>
<td>CO₂-Aquivalent (CO₂e)</td>
<td>t</td>
<td>6,16</td>
</tr>
<tr>
<td>Treibhauspotenzial des Kältemittels (GWP100)</td>
<td></td>
<td>2088</td>
</tr>
<tr>
<td>Schutzart (IP)</td>
<td>IPX1B</td>
<td>IPX1B</td>
</tr>
<tr>
<td>Filterklasse Zuluft</td>
<td>ISO Coarse > 60 % (G4)</td>
<td>ISO Coarse > 60 % (G4)</td>
</tr>
<tr>
<td>Filterklasse Abluft</td>
<td>ePM10 ≥ 50 % (MS)</td>
<td>ePM10 ≥ 50 % (MS)</td>
</tr>
<tr>
<td>Filterklasse Außenluft</td>
<td>ISO Coarse > 30 % (G2)</td>
<td>ISO Coarse > 30 % (G2)</td>
</tr>
<tr>
<td>Einsatzbereich Wohnfläche</td>
<td>m²</td>
<td>< 220</td>
</tr>
</tbody>
</table>

Dimensionen
- Kippmaß mm: 2020, 2020
- Höhe mm: 1885, 1885
- Breite mm: 1430, 1430
- Tiefe mm: 812, 812

Gewichte
- Gewicht Funktionsmodul kg: 243, 243
- Gewicht Speichermodule kg: 177, 177
- Gewicht leer kg: 420, 420
- Gewicht gefüllt kg: 670, 670

Anschlüsse
- Anschluss Heizung DN 22, DN 22
- Anschluss Warmwasser DN 22, DN 22
- Ananschluss Solarkreis DN 22, DN 22
- Zuluft/Abluft-Anschluss DN 160, DN 160
- Kondensatablauf mm: 22, 22
- Außenluft/Fortluftanschluss mm: 410x155 oval, 410x155 oval

Anforderung Heizungswasserqualität
- Wasserhärte °dH ≤ 3, ≤ 3
- Leitfähigkeit (Entschalten) μS/cm < 1000, < 1000
- Chlorid mg/l ≤ 30, ≤ 30
- Sauerstoff 8-12 Wochen nach Befüllung (Entschalten) mg/l < 0,02, < 0,02
- Sauerstoff 8-12 Wochen nach Befüllung (Entschalten) mg/l < 0,1, < 0,1
- pH-Wert (mit Aluminiumverbindungen) 8,0-8,5, 8,0-8,5
- pH-Wert (ohne Aluminiumverbindungen) 8,0-10,0, 8,0-10,0

Werte
- Wärmebereitstellungsgrad bis %: 90, 90
- Empfohlene max. Norm-Heizlast des Gebäudes kW: 10, 10
- Volumenstrom Heizung (EN 14511) bei A7/W35, B0/W35 und 5 K m³/h: 1,3, 1,3
- Volumenstrom Heizung min. m³/h: 0,7, 0,7
- Zuluft/Abluft-Volumenstrom m³/h: 80-300, 80-300
- Luftvolumenstrom nenn m³/h: 240, 240
- Außenluft/Fortluft-Volumenstrom m³/h: 1000, 1000
- Verfügbare externe Pressung Luftpumpe bei 230 m³/h ν Pa: 100, 100
- Verfügbare externe Pressung Außen-/Fortluft Pa: 50, 50
- Sicherheitsventil Warmwasser MPa: 1, 1
- Max. Vorlauftemperatur °C: 60, 60
- Sicherheitsventil Heizung MPa: 0,3, 0,3
- Ausdehnungsgefäß-Volumen l: 15, 15
- Ausdehnungsgefäß-Vordruck MPa: 0,075, 0,075
- Wohnfläche Kühlend min. aktiv (ohne Pufferspeicher) m²: 40, 40
- Volumenstrom Kühlend min. (ohne Pufferspeicher) m³/h: 0,7, 0,7
Lüftung, Trinkwassererwärmung, Heizen und Kühlen

LWZ 5/8 CS Premium

<table>
<thead>
<tr>
<th>Funktionen Lüftung</th>
<th>LWZ 5 CS Premium</th>
<th>LWZ 8 CS Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funktion Heizen</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Funktion Kühlen</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Funktion Warmwasser</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Funktion Solar</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

| Wärmequelle | Luft | Luft |

| Einsatzbereich Modernisierung | - | - |
| Einsatzbereich Neubau | x | x |

Hausgröße Neubau	m²	<240	<240
Aufstellungsort	x	Innen	Innen
Invertertechnologie	x	x	x

Einsatzbereich Heizen

Die Mischwassermenge bezieht sich auf eine Kaltwassereintrittstemperatur von 10 °C, eine Zapftemperatur von 40 °C und eine Zapfrate von 10 l/min.

Mischwassermenge

X Speichertemperatur [°C]
Y Mischwassermenge [l]

Einsatzbereich Kühlen

1 Abgrenzung des Einsatzbereiches
X Außentemperatur [°C]
Y Vorlauftemperatur [°C]
LWZ 8 CS Balance Set 1 Premium

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Typ</th>
<th>Beschreibung</th>
<th>Stck.</th>
<th>Best.-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LWZ 8 CS Premium</td>
<td>Lüftungs-Integralgerät</td>
<td>1</td>
<td>201290</td>
</tr>
<tr>
<td>LVS VTA 8</td>
<td>Bedarfsgeregelter Zuluftverteiler</td>
<td></td>
<td>1</td>
<td>238939</td>
</tr>
<tr>
<td>ZVTA 8 CO2</td>
<td>CO2-Sensor</td>
<td></td>
<td>1</td>
<td>239163</td>
</tr>
<tr>
<td>ZVTA 8 AS</td>
<td>Anwesenheitssensor</td>
<td></td>
<td>1</td>
<td>239164</td>
</tr>
<tr>
<td>LVS VTS 9</td>
<td>Schalldämmluftverteiler Aufputz, 9fach, einstellbar</td>
<td></td>
<td>1</td>
<td>234493</td>
</tr>
<tr>
<td>LWF AVF 100</td>
<td>Feuchtegeregeltes Abluftventil</td>
<td></td>
<td>4</td>
<td>236887</td>
</tr>
<tr>
<td>ZVTA 8 KV</td>
<td>Kompensationsventil</td>
<td></td>
<td>1</td>
<td>239166</td>
</tr>
<tr>
<td>ZVTA 8 FB</td>
<td>Kommunikationsschnittstelle</td>
<td></td>
<td>1</td>
<td>239165</td>
</tr>
</tbody>
</table>

Integralsystem mit bedarfsgeregelm Zuluft-Schalldämm-verteiler, Luftqualitätssensoren, Kompensationsventil, Abluft-Schalldämmverteiler und feuchtegeregelten Abluftventilen | 201431 |

LWZ 8 CS Balance Set 2 Premium

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Typ</th>
<th>Beschreibung</th>
<th>Stck.</th>
<th>Best.-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LWZ 8 CS Premium</td>
<td>Lüftungs-Integralgerät</td>
<td>1</td>
<td>201290</td>
</tr>
<tr>
<td>LVS VTA 8</td>
<td>Bedarfsgeregelter Zuluftverteiler</td>
<td></td>
<td>1</td>
<td>238939</td>
</tr>
<tr>
<td>ZVTA 8 AS</td>
<td>Anwesenheitssensor</td>
<td></td>
<td>2</td>
<td>239164</td>
</tr>
<tr>
<td>ZVTA 8 CO2</td>
<td>CO2-Sensor</td>
<td></td>
<td>2</td>
<td>239163</td>
</tr>
<tr>
<td>ZVTA 8 KV</td>
<td>Kompensationsventil</td>
<td></td>
<td>1</td>
<td>239166</td>
</tr>
<tr>
<td>ZVTA 8 FB</td>
<td>Kommunikationsschnittstelle</td>
<td></td>
<td>1</td>
<td>239165</td>
</tr>
<tr>
<td>LVS VTS 9</td>
<td>Schalldämmluftverteiler Aufputz, 9fach, einstellbar</td>
<td></td>
<td>1</td>
<td>234493</td>
</tr>
<tr>
<td>LWF AVF 100</td>
<td>Feuchtegeregeltes Abluftventil</td>
<td></td>
<td>6</td>
<td>236887</td>
</tr>
</tbody>
</table>

Integralsystem mit bedarfsgeregelm Zuluft-Schalldämm-verteiler, Luftqualitätssensoren, Kompensationsventil, Abluft-Schalldämmverteiler und feuchtegeregelten Abluftventilen | 201432 |
LWZ 8 CS Balance Set 1

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Typ</th>
<th>Beschreibung</th>
<th>Stck.</th>
<th>Best.-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LWZ 8 CS Premium</td>
<td>Lüftungs-Integralgerät</td>
<td>1</td>
<td>201290</td>
</tr>
<tr>
<td></td>
<td>LVS VTS 9</td>
<td>Schalldämmluftverteiler Aufputz, 9fach, einstellbar</td>
<td>2</td>
<td>234493</td>
</tr>
<tr>
<td></td>
<td>LWF AVF 100</td>
<td>Feuchtegeregeltes Abluftventil</td>
<td>4</td>
<td>236887</td>
</tr>
</tbody>
</table>

Integralsystem mit Schalldämmverteilern und feuchtegeregelten Abluftventilen 201429

LWZ 8 CS Balance Set 2

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Typ</th>
<th>Beschreibung</th>
<th>Stck.</th>
<th>Best.-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LWZ 8 CS Premium</td>
<td>Lüftungs-Integralgerät</td>
<td>1</td>
<td>201290</td>
</tr>
<tr>
<td></td>
<td>LVS VTS 9</td>
<td>Schalldämmluftverteiler Aufputz, 9fach, einstellbar</td>
<td>2</td>
<td>234493</td>
</tr>
<tr>
<td></td>
<td>LWF AVF 100</td>
<td>Feuchtegeregeltes Abluftventil</td>
<td>6</td>
<td>236887</td>
</tr>
</tbody>
</table>

Integralsystem mit Schalldämmverteilern und feuchtegeregelten Abluftventilen 201430
Leistungsdiagramm
LWZ 5 CS Premium

LWZ 8 CS Premium

X Außenfumperatur [°C]
Y Heizleistung [kW]
1 max. W35
2 max. W45
3 max. W55
4 min. W35
5 min. W45
6 min. W55
Verfügbare externe Förderhöhe der Umwälzpumpe

X Volumenstrom [m³/h]
Y Druck [hPa]

1 Pumpenleistung 100 %
2 Pumpenleistung 85 %
3 Pumpenleistung 65 %
4 Pumpenleistung 45 %

Lüfterkennlinie

Einsatzbereich
X Luftvolumenstrom [m³/h]
Y Mittelwert statischer Druck [Pa]
1 Maximalkennlinie des Lüfters
2 Anlagenkennlinien

0,30 spezifische Leistungsaufnahme 0,30 Wh/m³
0,35 spezifische Leistungsaufnahme 0,35 Wh/m³
0,40 spezifische Leistungsaufnahme 0,40 Wh/m³
0,45 spezifische Leistungsaufnahme 0,45 Wh/m³
0,50 spezifische Leistungsaufnahme 0,50 Wh/m³
0,55 spezifische Leistungsaufnahme 0,55 Wh/m³
Maße und Anschlüsse

<table>
<thead>
<tr>
<th>Maß</th>
<th>LWZ 5 CS Premium</th>
<th>LWZ 8 CS Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>b01</td>
<td>Durchführung elektr. Leitungen</td>
<td></td>
</tr>
<tr>
<td>c01</td>
<td>Kaltwasser Zulauf</td>
<td>Durchmesser mm</td>
</tr>
<tr>
<td>c06</td>
<td>Warmwasser Auslauf</td>
<td>Durchmesser mm</td>
</tr>
<tr>
<td>c09</td>
<td>Durchführung Zirkulation</td>
<td></td>
</tr>
<tr>
<td>c12</td>
<td>Sicherheitsventil Ablauf</td>
<td>Durchmesser mm</td>
</tr>
<tr>
<td>d25</td>
<td>Solar Vorlauf</td>
<td>Durchmesser mm</td>
</tr>
<tr>
<td>d26</td>
<td>Solar Rücklauf</td>
<td>Durchmesser mm</td>
</tr>
<tr>
<td>d45</td>
<td>Kondensatablauf</td>
<td>Durchmesser mm</td>
</tr>
<tr>
<td>e01</td>
<td>Heizung Vorlauf</td>
<td>Durchmesser mm</td>
</tr>
<tr>
<td>e02</td>
<td>Heizung Rücklauf</td>
<td>Durchmesser mm</td>
</tr>
<tr>
<td>g03</td>
<td>Außenluft</td>
<td>Nennweite</td>
</tr>
<tr>
<td>g04</td>
<td>Fortluft</td>
<td>Nennweite</td>
</tr>
<tr>
<td>g05</td>
<td>Abluft</td>
<td>Nennweite</td>
</tr>
<tr>
<td>g06</td>
<td>Zuluft</td>
<td>Nennweite</td>
</tr>
<tr>
<td>g07</td>
<td>Außenluft Erdwärmeübertrager</td>
<td>Nennweite</td>
</tr>
<tr>
<td>g09</td>
<td>Außenluft Wohnungslüftung opt.</td>
<td>Nennweite</td>
</tr>
</tbody>
</table>
Aufstellzeichnungen

Außen-/Fortluftanschluss mit Umlenkhaube

Außen-/Fortluftanschluss mit Luftschlauch
Gebäudekühlung

Trotz der variablen Kühlleistung des Gerätes empfehlen wir, die Volumenströme der Heizkreise und des Gerätes voneinander zu entkoppeln. Wir empfehlen den Einsatz eines Pufferspeichers. Der Pufferspeicher muss für das Kühlung geeignet sein, d. h. der Pufferspeicher muss dampfdiffusionsdicht isoliert sein.

Das Kühlen ohne einen Pufferspeicher ist nur dann möglich, wenn das Heizsystem sowohl den Mindestvolumenstrom einhält, als auch die minimale Kälteleistung übertragen kann. Der Mindestvolumenstrom muss in diesem Fall durch stets geöffnete Heizkreise gewährleistet werden. Ein Überströmventil ist dafür nicht geeignet. Den technischen Daten sind die Daten „Volumenstrom Kühlung min. (ohne Pufferspeicher)” und „Wohnfläche Kühlung min. aktiv (ohne Pufferspeicher)” zu entnehmen.

Erfolgt das Kühlen mit der Fußbodenheizung, müssen die Fußbodenheizung und die Stellantriebe zum Kühlen geeignet sein. An die Einzelraumregelan und den Heizkreisverteiler muss in jedem Fall ein Kontakt für die Betriebsart „Kühlen” angeschlossen werden können. Im Kühlmodus können und müssen damit Zonen aktiv geöffnet oder geschlossen werden können.

Im Kühlbetrieb mit Glebekonvektoren müssen die Glebekonvektoren ausreichend Leistung abnehmen können. Der Mindestvolumenstrom muss ebenfalls sichergestellt sein.

Für den Kühlbetrieb ist die Installation einer zusätzlichen Regelung „FES Komfort” im Führungsraum notwendig. Eine Kondenstabsbildung in Verbindung mit Flächenkühlsystemen wird durch die integrierte zusätzliche Taupunktüberwachung verhindert.

Inverter

Funktionsschema
Elektrischer Anschluss

Der elektrische Anschluss der Wärmepumpe bedarf der Anmeldung beim zuständigen Energieversorgungsunternehmen.

Alle elektrischen Installationsarbeiten insbesondere die Schutzmaßnahmen sind entsprechend den VDE-Bestimmungen und Vorschriften des zuständigen Energieversorgungsunternehmens auszuführen.

Der Anschluss erfolgt nach dem Elektroanschlussplan. Hierzu muss auch die Bedienungs- und Installationsanleitung des Gerätes beachtet werden.
Standardschaltung 1: Trinkwassererwärmung, Raumheizung mit 1 Heizkreis, thermische Solaranlage

Die Legende zu den Standardschaltungen finden Sie im Anhang.
Standardschaltung 2: Trinkwassererwärmung, Raumheizung mit 2 Heizkreisen, hydraulische Weiche, thermische Solaranlage

Die Legende zu den Standardschaltungen finden Sie im Anhang.
Lüftung, Trinkwassererwärmung, Heizen und Kühlen
LWZ 5/8 CS Premium

Standardschaltung 3: Trinkwassererwärmung, Raumheizung/Kühlung mit 1 Heizkreis und Pufferspeicher, thermische Solaranlage

Die Legende zu den Standardschaltungen finden Sie im Anhang.
Standardschaltung 4: Trinkwassererwärmung, Raumheizung mit Heizkreis 1, Raumkühlung mit Heizkreis 2 und FES, Pufferspeicher

Die Legende zu den Standardschaltungen finden Sie im Anhang.
Standardschaltung 5: Trinkwassererwärmung, Raumheizung mit 1 Heizkreis, thermische Solaranlage und Feststoffkessel mit Pufferspeicher

Die Legende zu den Standardschaltungen finden Sie im Anhang.
Installation

☐ Der frostfreie Aufstellungsort ist festgelegt.
☐ Fläche, Volumen und Raumhöhe des Aufstellungsräumes entsprechen den technischen Vorgaben des Gerätes inklusive montierter Luftleitungen und sonstigem Zubehör.
☐ Die zulässige Bodenbelastung ist höher als das Gewicht des gefüllten Gerätes.
☐ Eine Körperschall-Übertragung auf das Gebäude ist weitestgehend ausgeschlossen.
☐ Der elektrische Anschluss und eventuelle Sondertarife sind mit dem Energieversorgungsunternehmen abgestimmt.
☐ Externe Hocheffizienzpumpen wurden elektrisch über Hilfsschütze angeschlossen.
☐ Das Kondenswasser wird mit natürlichem Gefälle in den bestehenden Abfluss in der Nähe des Gerätes eingeleitet.
☐ Das Kondenswasser wird mit einer zusätzlichen Kondensatpumpe abgeleitet. Die Kondensatpumpe ist für die Leitungslänge und Förderhöhe geeignet.
☐ Die Position der Fernbedienung und die elektrische Verbindung zum Gerät sind definiert.

Warmwasser

☐ Der Warmwasserbedarf wird durch das Gerät abgedeckt.

Heizung

☐ Die Geräte-Heizleistung ist im Auslegungspunkt größer als die Heizlast nach EN12831.
☐ Der Wärmebedarf wird zu mindestens 95% durch die Wärmepumpe abgedeckt.
☐ Die Heizflächen sind für eine Vorlaufstemperatur von ≤ 55 °C ausgelegt.
☐ Der heizungsseitige Mindestvolumenstrom des Gerätes ist sichergestellt.
☐ Es wurde geprüft, ob die Größe des integrierten Membran-Ausdehnungsgefässes ausreichend ist.

Solar

☐ Das Gerät ist für den Betrieb mit einer thermischen Solaranlage geeignet.
☐ Die Anzahl der Kollektoren entspricht den Vorgaben für das Gerät.
☐ Die Solaranlage ist für das Gebäude entsprechend geplant worden.

Lüftung - allgemein

☐ Die zu beheizenden Geschosse und Räume sind definiert.
☐ Der Luftvolumenstrom ist für jeden Raum festgelegt.
☐ Das zu belüftende Gesamt-Raumvolumen entspricht den Mindest- und Maximalvorgaben des Gerätes.

☐ Die Luftmenge pro Ventil wurde definiert.
☐ Die Gesamtluftmenge wurde nach DIN 1946-Teil 6 bestimmt.
☐ Die Strömungsgeschwindigkeit im Luft-Verteilsystem ist < 3 m/s
☐ Die Strömungsgeschwindigkeit in den Sammelleitungen Zu- und Abluft ist < 5 m/s.
☐ Ein luftseitiger Kurzschluss zwischen Fortluft und Außenluft ist ausgeschlossen.
☐ Die Außenluftansaugung erfolgt über Erdgleiche.

Luftleitungstrasse

☐ Die Luftleitungstrasse und die Luftleitungsdurchmesser sind definiert. Auf eine möglichst einfach zu realisierende bauseitige Verlegung wurde geachtet.
☐ Der Fortluftanschluss durch die Gebäudehülle ist einfach zu realisieren und übersteigt nicht die maximal zulässige Luftleitungslänge.
☐ Bei der Positionierung der Zu- und Abluftventile wurde auf die optimale Raumdurchströmung bei einer geringen Strömungsgeschwindigkeit geachtet.
☐ Das Küchen-Abluftventil ist nicht in unmittelbarer Nähe der Dunstabzugshaube positioniert.
☐ Die Dunstabzugshaube ist mit einer selbsttätigen Rückschlagklappe ausgestattet oder ist eine Umluft-Dunstabzugshaube. Es erfolgt kein Eintrag von Außenluft durch die Dunstabzugshaube.
☐ Reinigungs- und Wartungsöffnungen für alle Luftleitungen sind definiert.
☐ Die Position von Telefonieschalldämpfern für Wohn- und Schlafzimmer sind im Gebäudeplan definiert.
☐ Die Überströmöffnungen sind für den geplanten Luftvolumenstrom ausreichend groß und im Gebäudeplan definiert.

Kachel- und Kaminöfen

☐ Kachel- oder Kaminofen wird raumluftunabhängig betrieben.
☐ Kabel wurde vom Kachel- oder Kaminofen zum Lüftungsgerät verlegt, um bei Bedarf eine geeignete Sicherheitseinrichtung anzuschließen.
☐ Der raumluftabhängige Kachel- oder Kaminofen ist mit einer Sicherheitseinrichtung ausgestattet, mit separater Verbrennungsluftversorgung versehen und mit der Lüftungsanlage elektrisch verbunden.
☐ Freigabe vom Schornsteinfeger liegt vor.
Kurz und bündig

- Kompakte Geräte mit den Funktionen: Lüften, Heizen und Warmwasserbereitung
- Matrixdisplay mit “Touch Wheel” für intuitive Bedienung
- Integrierte Hocheffizienzpumpe für energiesparende Wärme­verteilung
- Integrierter Warmwasserspeicher für hohen Warmwasser­komfort

Sicherheit und Qualität

Auszeichnungen

ANWENDUNG: Leistungsgeregeltes Integralsystem mit Luft | Wasser-Wärmepumpe zur zentralen Be­ und Entlüftung, zentralen Trinkwassererwärmung und Beheizung im Neubau und Einfamilienhäusern.

Arbeitsweise

Weiteres Zubehör

227664 FES Komfort
229336 ISG web
233493 ISG plus
233836 AWG 315 SR
232955 AWG 315 GL
Technische Daten

<table>
<thead>
<tr>
<th>LWZ 5 S Plus</th>
<th>201291</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärmelleistungen</td>
<td></td>
</tr>
<tr>
<td>Wärmeleistung bei A-7/W35 (EN 14511)</td>
<td>kW</td>
</tr>
<tr>
<td>Wärmeleistung bei A2/W35 (EN 14511)</td>
<td>kW</td>
</tr>
<tr>
<td>Wärmeleistung bei A7/W35 (EN 14511)</td>
<td>kW</td>
</tr>
<tr>
<td>Wärmeleistung Not-/Zusatzheizung</td>
<td>kW</td>
</tr>
<tr>
<td>Wärmeleistung max.</td>
<td>kW</td>
</tr>
<tr>
<td>Leistungsaufnahmen</td>
<td></td>
</tr>
<tr>
<td>Leistungsaufnahme bei A-7/W35 (EN 14511)</td>
<td>kW</td>
</tr>
<tr>
<td>Leistungsaufnahme bei A2/W35 (EN 14511)</td>
<td>kW</td>
</tr>
<tr>
<td>Leistungsaufnahme bei A7/W35 (EN 14511)</td>
<td>kW</td>
</tr>
<tr>
<td>Leistungszahlen</td>
<td></td>
</tr>
<tr>
<td>Leistungszahl bei A-7/W35 (EN 14511)</td>
<td>dB(A)</td>
</tr>
<tr>
<td>Leistungszahl bei A2/W35 (EN 14511)</td>
<td>dB(A)</td>
</tr>
<tr>
<td>Leistungszahl bei A7/W35 (EN 14511)</td>
<td>dB(A)</td>
</tr>
<tr>
<td>Schallangaben</td>
<td></td>
</tr>
<tr>
<td>Schallleistungspegel (EN 12102)</td>
<td>dB(A)</td>
</tr>
<tr>
<td>Schallleistungspegel Vollast (EN 12102)</td>
<td>dB(A)</td>
</tr>
<tr>
<td>Einsatzgrenzen</td>
<td></td>
</tr>
<tr>
<td>Einsatzgrenze Wärmquelle min.</td>
<td>°C</td>
</tr>
<tr>
<td>Einsatzgrenze Wärmquelle max.</td>
<td>°C</td>
</tr>
<tr>
<td>Max. Druckverlust Außenluft</td>
<td>Pa</td>
</tr>
<tr>
<td>Aufstellraum Volumen min.</td>
<td>m³</td>
</tr>
<tr>
<td>Warmwasser-Temperatur mit Wärmepumpe bei A2</td>
<td>°C</td>
</tr>
</tbody>
</table>

Hydraulische Daten

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Speichervolumen</td>
<td>l</td>
</tr>
</tbody>
</table>

Energetische Daten

<table>
<thead>
<tr>
<th>LWZ 5 S Plus</th>
<th>201291</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energieeffizienzklasse Wärmepumpe W55</td>
<td>A+</td>
</tr>
<tr>
<td>Energieeffizienzklasse Warmwasserbereitung bei Lastprofil XL</td>
<td>A</td>
</tr>
<tr>
<td>Energieeffizienzklasse Warmwasserbereitung (Lastprofil), durchschnittliches Klima</td>
<td>A (XL)</td>
</tr>
<tr>
<td>Energieeffizienzklasse</td>
<td>A++/A++</td>
</tr>
</tbody>
</table>

Elektrische Daten

<table>
<thead>
<tr>
<th>LWZ 5 S Plus</th>
<th>201291</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungsaufnahme Lüfter max.</td>
<td>W</td>
</tr>
<tr>
<td>Leistungsaufnahme Lüfter nenn.</td>
<td>W</td>
</tr>
<tr>
<td>Leistungsaufnahme Lüfter</td>
<td>W</td>
</tr>
<tr>
<td>Leistungsaufnahme Umwälzpumpe</td>
<td>W</td>
</tr>
<tr>
<td>Leistungsaufnahme max. ohne Not-/Zusatzheizung</td>
<td>kW</td>
</tr>
<tr>
<td>Absicherung Not-/Zusatzheizung</td>
<td>A</td>
</tr>
<tr>
<td>Absicherung Verdichter max.</td>
<td>A</td>
</tr>
<tr>
<td>Absicherung Verdichter</td>
<td>A</td>
</tr>
<tr>
<td>Absicherung WP-Lüfter</td>
<td>A</td>
</tr>
<tr>
<td>Absicherung Steuerung</td>
<td>A</td>
</tr>
<tr>
<td>Nennspannung Not-/Zusatzheizung</td>
<td>V</td>
</tr>
<tr>
<td>Nennspannung Verdichter</td>
<td>V</td>
</tr>
<tr>
<td>Nennspannung WP-Lüfter</td>
<td>V</td>
</tr>
<tr>
<td>Nennspannung Steuerung</td>
<td>V</td>
</tr>
<tr>
<td>Phasen Verdichter</td>
<td>1/N/PE</td>
</tr>
<tr>
<td>Phasen WP-Lüfter</td>
<td>1/N/PE</td>
</tr>
<tr>
<td>Phasen Steuerung</td>
<td>1/N/PE</td>
</tr>
<tr>
<td>Frequenz</td>
<td>Hz</td>
</tr>
<tr>
<td>Stromaufnahme gesamt</td>
<td>A</td>
</tr>
<tr>
<td>Anlaufstrom (mit/ohne Anlaufstrombegrenzer)</td>
<td>A</td>
</tr>
<tr>
<td>Phasen Not-/Zusatzheizung</td>
<td>3/N/PE</td>
</tr>
</tbody>
</table>

Ausführungen

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kältemittel</td>
<td>R410 A</td>
</tr>
<tr>
<td>Füllmenge Kältemittel</td>
<td>kg</td>
</tr>
<tr>
<td>CO2-Equivalent (CO2e)</td>
<td>t</td>
</tr>
<tr>
<td>Treibhauspotenzial des Kältemittels (GWP100)</td>
<td></td>
</tr>
<tr>
<td>Schutzart (IP)</td>
<td>ISO Coarse > 60 % (G6)</td>
</tr>
<tr>
<td>Filterklasse Abluft</td>
<td>IP1XB</td>
</tr>
<tr>
<td>Filterklasse Zuluft</td>
<td>ISO Coarse > 60 % (G6)</td>
</tr>
<tr>
<td>Filterklasse Außenluft</td>
<td>ISO Coarse > 30 % (G2)</td>
</tr>
<tr>
<td>Einsatzbereich Wohnfläche</td>
<td>m²</td>
</tr>
<tr>
<td>LWZ 5 S Plus</td>
<td>LWZ 5 S Plus</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Dimensionen</td>
<td></td>
</tr>
<tr>
<td>Kippmaß</td>
<td>mm 2020</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm 1885</td>
</tr>
<tr>
<td>Breite</td>
<td>mm 1430</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm 735</td>
</tr>
<tr>
<td>Gewichte</td>
<td></td>
</tr>
<tr>
<td>Gewicht Funktionsmodul</td>
<td>kg 223</td>
</tr>
<tr>
<td>Gewicht Speichermodul</td>
<td>kg 177</td>
</tr>
<tr>
<td>Gewicht leer</td>
<td>kg 400</td>
</tr>
<tr>
<td>Gewicht gefüllt</td>
<td>kg 650</td>
</tr>
<tr>
<td>Anschlüsse</td>
<td></td>
</tr>
<tr>
<td>Anschluss Heizung</td>
<td>DN 22</td>
</tr>
<tr>
<td>Anschluss Warmwasser</td>
<td>DN 22</td>
</tr>
<tr>
<td>Zuluft/Abluft-Anschluss</td>
<td>DN 160</td>
</tr>
<tr>
<td>Kondensatablauf</td>
<td>mm 22</td>
</tr>
<tr>
<td>Außenluft/Fortluftanschluss</td>
<td>mm 410x155 oval</td>
</tr>
<tr>
<td>Anforderung Heizungswasserqualität</td>
<td></td>
</tr>
<tr>
<td>Wasserhärte</td>
<td>°dH ≤3</td>
</tr>
<tr>
<td>Leitfähigkeit (Enthärten)</td>
<td>μS/cm <1000</td>
</tr>
<tr>
<td>Leitfähigkeit (Entsalzen)</td>
<td>μS/cm 20-100</td>
</tr>
<tr>
<td>Chlorid</td>
<td>mg/l ≤30</td>
</tr>
<tr>
<td>Sauerstoff 8-12 Wochen nach Befüllung (Enthärten)</td>
<td>mg/l <0,02</td>
</tr>
<tr>
<td>Sauerstoff 8-12 Wochen nach Befüllung (Entsalzen)</td>
<td>mg/l ≤0,1</td>
</tr>
<tr>
<td>pH-Wert (mit Aluminiumverbindungen)</td>
<td>8,0-8,5</td>
</tr>
<tr>
<td>pH-Wert (ohne Aluminiumverbindungen)</td>
<td>8,0-10,0</td>
</tr>
<tr>
<td>Werte</td>
<td></td>
</tr>
<tr>
<td>Wärmebereitstellungsgrad bis</td>
<td>% 90</td>
</tr>
<tr>
<td>Empfohlene max. Norm-Heizlast des Gebäudes</td>
<td>kW 8</td>
</tr>
<tr>
<td>Volumenstrom Heizung (EN 14511) bei A7/W35, B0/W35 und 5 K</td>
<td>m³/h 0,775</td>
</tr>
<tr>
<td>Volumenstrom Heizung min.</td>
<td>m³/h 0,7</td>
</tr>
<tr>
<td>Zuluft/Abluft-Volumenstrom</td>
<td>m³/h 80-300</td>
</tr>
<tr>
<td>Luftvolumenstrom nenn</td>
<td>m³/h 240</td>
</tr>
<tr>
<td>Außenluft/Fortluft-Volumenstrom</td>
<td>m³/h 1000</td>
</tr>
<tr>
<td>Verfügbare externe Pressung Lüftung bei 230 m³/h</td>
<td>Pa 100</td>
</tr>
<tr>
<td>Verfügbare externe Pressung Außen-/Fortluft</td>
<td>Pa 50</td>
</tr>
<tr>
<td>Sicherheitsventil Warmwasser</td>
<td>MPa 1</td>
</tr>
<tr>
<td>Max. Vorlauftemperatur</td>
<td>°C 60</td>
</tr>
<tr>
<td>Sicherheitsventil Heizung</td>
<td>MPa 0,3</td>
</tr>
</tbody>
</table>
Lüftung, Trinkwassererwärmung und Heizung

LWZ 5 S Plus

<table>
<thead>
<tr>
<th>Funktionsbereich</th>
<th>LWZ 5 S Plus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lüften, Heizen und Warmwasser</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Funktionen Lüftung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funktion Heizen</td>
</tr>
<tr>
<td>Funktion Kühlen</td>
</tr>
<tr>
<td>Funktion Warmwasser</td>
</tr>
<tr>
<td>Funktion Solar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wärmequelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luft</td>
</tr>
</tbody>
</table>

| Einsatzbereich Modernisierung | x |

<table>
<thead>
<tr>
<th>Hausgröße Neubau</th>
<th>m²</th>
</tr>
</thead>
<tbody>
<tr>
<td><240</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aufstellungsort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innen</td>
</tr>
</tbody>
</table>

| Invertertechnologie | x |

Einsatzbereich Heizen

<table>
<thead>
<tr>
<th>Invertertechnologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
</tr>
</tbody>
</table>

Mischwassermenge

Die Mischwassermenge bezieht sich auf eine Kaltwassereintrittstemperatur von 10 °C, eine Zapftemperatur von 40 °C und eine Zapfrate von 10 l/min.

<table>
<thead>
<tr>
<th>X Speichertemperatur [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y Mischwassermenge [l]</td>
</tr>
</tbody>
</table>

![Diagramm der Mischwassermenge](image)
Lüftung, Trinkwassererwärmung und Heizung

LWZ 5 S Plus

Leistungsdiagramm

LWZ 5 S Plus

X Außentemperatur [°C]
Y Heizleistung [kW]
1 max. W35
2 max. W45
3 max. W55
4 min. W35
5 min. W45
6 min. W55
Lüftung, Trinkwassererwärmung und Heizung
LWZ 5 S Plus

Verfügbare externe Förderhöhe der Umwälzpumpe

X Volumenstrom [m³/h] Y Druck [hPa]

1 Pumpenleistung 100 %
2 Pumpenleistung 85 %
3 Pumpenleistung 65 %
4 Pumpenleistung 45 %

Lüfterkennlinie

Einsatzbereich

X Luftvolumenstrom [m³/h] Y Mittelwert statischer Druck [Pa]

1 Maximalkennlinie des Lüfters
2 Anlagenkennlinien

0,30 spezifische Leistungsaufnahme 0,30 Wh/m³
0,35 spezifische Leistungsaufnahme 0,35 Wh/m³
0,40 spezifische Leistungsaufnahme 0,40 Wh/m³
0,45 spezifische Leistungsaufnahme 0,45 Wh/m³
0,50 spezifische Leistungsaufnahme 0,50 Wh/m³
0,55 spezifische Leistungsaufnahme 0,55 Wh/m³
Lüftung, Trinkwassererwärmung und Heizung
LWZ 5 S Plus

Maße und Anschlüsse

<table>
<thead>
<tr>
<th>Code</th>
<th>Beschreibung</th>
<th>Durchmesser</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>b01</td>
<td>Durchführung elektr. Leitungen</td>
<td>Durchmesser</td>
<td>22</td>
</tr>
<tr>
<td>c01</td>
<td>Kaltwasser Zulauf</td>
<td>Durchmesser</td>
<td>22</td>
</tr>
<tr>
<td>c06</td>
<td>Warmwasser Auslauf</td>
<td>Durchmesser</td>
<td>22</td>
</tr>
<tr>
<td>c09</td>
<td>Durchführung Zirkulation</td>
<td>Durchmesser</td>
<td>22</td>
</tr>
<tr>
<td>c12</td>
<td>Sicherheitsventil Ablauf</td>
<td>Durchmesser</td>
<td>19</td>
</tr>
<tr>
<td>d45</td>
<td>Kondensatablauf</td>
<td>Durchmesser</td>
<td>22</td>
</tr>
<tr>
<td>e01</td>
<td>Heizung Vorlauf</td>
<td>Durchmesser</td>
<td>22</td>
</tr>
<tr>
<td>e02</td>
<td>Heizung Rücklauf</td>
<td>Durchmesser</td>
<td>22</td>
</tr>
<tr>
<td>g03</td>
<td>Außenluft</td>
<td>Nennweite</td>
<td>DN 315</td>
</tr>
<tr>
<td>g04</td>
<td>Fortluft</td>
<td>Nennweite</td>
<td>DN 315</td>
</tr>
<tr>
<td>g05</td>
<td>Abluft</td>
<td>Nennweite</td>
<td>DN 160</td>
</tr>
<tr>
<td>g06</td>
<td>Zuluft</td>
<td>Nennweite</td>
<td>DN 160</td>
</tr>
<tr>
<td>g07</td>
<td>Außenluft Erdwärmeübertrager</td>
<td>Nennweite</td>
<td>DN 160</td>
</tr>
<tr>
<td>g09</td>
<td>Außenluft Wohnungslüftung opt.</td>
<td>Nennweite</td>
<td>DN 160</td>
</tr>
</tbody>
</table>
Aufstellzeichnungen

Außen-/Fortluftanschluss mit Umlenkhaube

Außen-/Fortluftanschluss mit Luftschlauch
Lüftung, Trinkwassererwärmung und Heizung
LWZ 5 S Plus

Funktionsschema

1 Außenluft
2 Abluft
3 Zuluft
4 Fortluft
5 Zuluftlüfter
6 Kreuzgegenstrom-Wärmeübertrager
7 Fortluftlüfter
8 Luftvorwärmer
9 Verdampfer
10 Wärmepumpenlüfter
11 Expansionsventil
12 Verflüssiger
13 Heat-Pipe-Ventil
14 Verdichter
15 Multifunktionsgruppe
16 Heizungsumwälzpumpe
17 Inverter
18 Trinkwarmwasserspeicher
19 Rückschlagklappe
20 Zirkulation (optional)
21 Kaltwasser Zulauf
22 Warmwasser Auslauf
23 Heizung Rücklauf
24 Heizung Vorlauf
Elektrischer Anschluss

Der elektrische Anschluss der Wärmepumpe bedarf der Anmeldung beim zuständigen Energieversorgungsunternehmen.

Alle elektrischen Installationsarbeiten insbesondere die Schutzmaßnahmen sind entsprechend den VDE-Bestimmungen und Vorschriften des zuständigen Energieversorgungsunternehmens auszuführen.

Der Anschluss erfolgt nach dem Elektroanschlussplan. Hierzu muss auch die Bedienungs- und Installationsanleitung des Geräts beachtet werden.

Steuerung

- **HMV**: Mischer
- **HK2 230V**: Pumpe Heizkreis 2 (230 V)
- **KUE**: ohne Funktion
- **O/K**: Ofen/Kamin (optional)
- **ext. UMV**: externes Umschaltventil WW-Speicher
- **SL**: Schnelllüftung (optional)
- **FA**: Fenster auf (optional)
- **TA**: Außentemperaturfühler
- **TV**: Vorlauftemperaturfühler Mischerkreis
- **TR**: Raumtemperaturfühler
- **TS**: ohne Funktion
- **SOL**: ohne Funktion
- **HK2**: Regelungsanschluss Pumpe 2. HK

Anschluss 2. Bedienteil oder ISG

- **+Ub**: Anschluss 2. Bedienteil oder ISG
- **CAN H**: Anschluss 2. Bedienteil oder ISG
- **CAN L**: Anschluss 2. Bedienteil oder ISG
- **GND**: Anschluss 2. Bedienteil oder ISG

Zentrales Lüftungsgerät

- **1**: Zentrales Lüftungsgerät
- **2**: Netzanschluss, Haushalts-Tarifzähler
- **3**: Differenzdruckschalter Feuerstätte
- **4**: Druckanschluss „Ofen“
- **5**: Druckanschluss „Raum“
- **6**: Abgas-Temperaturfühler
Standardschaltung 1: Trinkwassererwärmung, Raumheizung mit 1 Heizkreis

Die Legende zu den Standardschaltungen finden Sie im Anhang.
Standardschaltung 2: Trinkwassererwärmung, Raumheizung mit 2 Heizkreisen, hydraulische Weiche

Die Legende zu den Standardschaltungen finden Sie im Anhang.
Standardschaltung 3: Trinkwassererwärmung, Raumheizung mit 1 Heizkreis, Unterstützung durch thermische Solaranlage und Feststoffkessel mit Pufferspeicher

Die Legende zu den Standardschaltungen finden Sie im Anhang.
Installation
- Der frostfreie Aufstellungsort ist festgelegt.
- Fläche, Volumen und Raumhöhe des Aufstellungsräumes entsprechen den technischen Vorgaben des Gerätes inklusive montierter Luftleitungen und sonstigem Zubehör.
- Die zulässige Bodenbelastung ist höher als das Gewicht des gefüllten Gerätes.
- Eine Körperschall-Übertragung auf das Gebäude ist weitgehend ausgeschlossen.
- Der elektrische Anschluss und eventuelle Sondertarife sind mit dem Energieversorgungsunternehmen abgestimmt.
- Externe Hocheffizienzpumpen wurden elektrisch über Hilfsschütze angeschlossen.
- Das Kondenswasser wird mit natürlichem Gefälle in den bestehenden Abfluss in der Nähe des Gerätes eingeleitet.
- Das Kondenswasser wird mit einer zusätzlichen Kondensatpumpe abgeleitet. Die Kondensatpumpe ist für die Leitungslänge und Förderhöhe geeignet.
- Die Position der Fernbedienung und die elektrische Verbindung zum Gerät sind definiert.

Warmwasser
- Der Warmwasserbedarf wird durch das Gerät abgedeckt.

Heizung
- Die Geräte-Heizleistung ist im Auslegungspunkt größer als die Heizlast nach EN12831.
- Der Wärmebedarf wird zu mindestens 95% durch die Wärmepumpe abgedeckt.
- Die Heizflächen sind für eine Vorlauftemperatur von ≤ 55 °C ausgelegt.
- Der heizungsseitige Mindestvolumenstrom des Gerätes ist sichergestellt.
- Es wurde geprüft, ob die Größe des integrierten Membran-Ausdehnungsgefässes ausreichend ist.

Lüftung - allgemein
- Die zu beheizenden Geschosse und Räume sind definiert.
- Der Luftvolumenstrom ist für jeden Raum festgelegt.
- Das zu belüftende Gesamt-Raumvolumen entspricht den Mindest- und Maximalvorgaben des Gerätes.
- Die Luftmenge pro Ventil wurde definiert.
- Die Gesamtluftmenge wurde nach DIN 1946-Teil 6 bestimmt.
- Die Strömungsgeschwindigkeit im Luft-Verteilsystem ist < 3 m/s
- Die Strömungsgeschwindigkeit in den Sammelleitungen Zu- und Abluft ist < 5 m/s.
- Ein luftseitiger Kurzschluss zwischen Fortluft und Außenluft ist ausgeschlossen.
- Die Außenlufťansaugung erfolgt über Erdgleiche.
- Der Fortlufťanschluss durch die Gebäudehülle ist einfach zu realisieren und übersteigt nicht die maximal zulässige Luftleitungslänge.
- Bei der Positionierung der Zu- und Abluftventile wurde auf die optimale Raumdurchströmung bei einer geringen Strömungsgeschwindigkeit geachtet.
- Das Küchen-Abluftventil ist nicht in unmittelbarer Nähe der Dunstabzugshaube positioniert.
- Die Dunstabzugshaube ist mit einer selbsttätigen Rückschlagklappe ausgestattet oder ist eine Umluft-Dunstabzugshaube. Es erfolgt kein Eintrag von Außenluft durch die Dunstabzugshaube.
- Reinigungs- und Wartungsoffnungen für alle Luftleitungen sind definiert.
- Die Position von Telefonieschalldämpfern für Wohn- und Schlafzimmer sind im Gebäudeplan definiert.
- Die Überströmöffnungen sind für den geplanten Luftvolumenstrom ausreichend groß und im Gebäudeplan definiert.

Kachel- und Kaminöfen
- Kachel- oder Kaminofen wird raumluftunabhängig betrieben.
- Kabel wurde vom Kachel- oder Kaminofen zum Lüftungsgerät verlegt, um bei Bedarf eine geeignete Sicherheitseinrichtung anzuschließen.
- Der raumluftabhängige Kachel- oder Kaminofen ist mit einer Sicherheitseinrichtung ausgestattet, mit separater Verbrennungsluftversorgung versehen und mit der Lüftungsanlage elektrisch verbunden.
- Freigabe vom Schornsteinfeger liegt vor.

Kaleo- und Kaminofen wird raumluftunabhängig betrieben.
Kabel wurde vom Kachel- oder Kaminofen zum Lüftungsgerät verlegt, um bei Bedarf eine geeignete Sicherheitseinrichtung anzuschließen.
Der raumluftabhängige Kachel- oder Kaminofen ist mit einer Sicherheitseinrichtung ausgestattet, mit separater Verbrennungsluftversorgung versehen und mit der Lüftungsanlage elektrisch verbunden.
Lüftung, Trinkwassererwärmung und Heizung
LWZ 5/8 S Trend

Kurz und bündig
- Integralsystem mit Luft | Wasser-Wärmepumpe für Heizung sowie zentrale Be- und Entlüftung
- Flexibel zu kombinieren mit 300l bzw. 400l Trinkwarmwasserspeicher für individuellen Warmwasserkomfort
- Matrixdisplay mit "Touch Wheel" für intuitive Bedienung
- Integrierte Hocheffizienzpumpe für energiesparende Wärme-verteilung
- Elektroanschlussfeld bei geschlossenem Gerät erreichbar
- Anbindung einer Photovoltaikanlage optional über ISG

Sicherheit und Qualität

ANWENDUNG: Leistungsgeregeltes Integralsystem mit Luft | Wasser-Wärmepumpe zur zentralen Be- und Entlüftung und Beheizung, Kombination mit externem Trinkwarmwasserspeicher im Neubau und Einfamilienhäusern.

EFFIZIENZ: Hohe Effizienz durch optimierten Kältekreis, energieeffizient durch Konstant-Volumenstromlüfter.

INSTALLATION: Die Anschlüsse für Außenluft, Zuluft, Fortluft und Abluft befinden sich auf der Oberseite des Gerätes. Einfaches Erreißen des Elektroanschlussfeldes.

Arbeitsweise

Weiteres Zubehör
227664 FES Komfort
229336 ISG web
233493 ISG plus
233836 AWG 315 SR
232955 AWG 315 GL
231039 AWG 315 L
232341 LLB AWG 315 L
201618 LSWP 315-4 SG

Weitere Informationen finden Sie unter www.stiebel-eltron.de
Technische Daten

<table>
<thead>
<tr>
<th></th>
<th>LWZ 5 S Trend</th>
<th>LWZ 8 S Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärmeleistungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wärmeleistung bei A-7/W35 (EN 14511)</td>
<td>kW</td>
<td>5,50</td>
</tr>
<tr>
<td>Wärmeleistung bei A2/W35 (EN 14511)</td>
<td>kW</td>
<td>5,16</td>
</tr>
<tr>
<td>Wärmeleistung bei A7/W35 (EN 14511)</td>
<td>kW</td>
<td>4,40</td>
</tr>
<tr>
<td>Wärmeleistung Not-/Zusatzheizung</td>
<td>kW</td>
<td>2,9 / 5,8 / 8,8</td>
</tr>
<tr>
<td>Wärmeleistung max.</td>
<td>kW</td>
<td>14,3</td>
</tr>
<tr>
<td>Leistungsaufnahmen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leistungsaufnahme bei A-7/W35 (EN 14511)</td>
<td>kW</td>
<td>2,11</td>
</tr>
<tr>
<td>Leistungsaufnahme bei A2/W35 (EN 14511)</td>
<td>kW</td>
<td>1,38</td>
</tr>
<tr>
<td>Leistungsaufnahme bei A7/W35 (EN 14511)</td>
<td>kW</td>
<td>0,93</td>
</tr>
<tr>
<td>Leistungszahlen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leistungszahl bei A-7/W35 (EN 14511)</td>
<td>kW</td>
<td>2,61</td>
</tr>
<tr>
<td>Leistungszahl bei A2/W35 (EN 14511)</td>
<td>kW</td>
<td>3,74</td>
</tr>
<tr>
<td>Leistungszahl bei A7/W35 (EN 14511)</td>
<td>kW</td>
<td>4,74</td>
</tr>
<tr>
<td>Schallangaben</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schallleistungspegel (EN 12102)</td>
<td>dB(A)</td>
<td>52</td>
</tr>
<tr>
<td>Schallleistungspegel Vollast (EN 12102)</td>
<td>dB(A)</td>
<td>59</td>
</tr>
<tr>
<td>Einsatzgrenzen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einsatzgrenze Wärmequelle min.</td>
<td>°C</td>
<td>-20</td>
</tr>
<tr>
<td>Einsatzgrenze Wärmequelle max.</td>
<td>°C</td>
<td>35</td>
</tr>
<tr>
<td>Max. Druckverlust Außenluft</td>
<td>Pa</td>
<td>25</td>
</tr>
<tr>
<td>Aufstellraum Volumen min.</td>
<td>m³</td>
<td>7</td>
</tr>
<tr>
<td>Warmwasser-Temperatur mit Wärmepumpe bei A2</td>
<td>°C</td>
<td>50</td>
</tr>
<tr>
<td>Energetische Daten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energieeffizienzklasse Wärmepumpe W55</td>
<td>A+</td>
<td>A+</td>
</tr>
<tr>
<td>Energieeffizienzklasse Warmwasserbereitung bei Lastprofil XL</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Energieeffizienzklasse</td>
<td>A++/A++</td>
<td>A++/A++</td>
</tr>
<tr>
<td>Elektrische Daten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leistungsaufnahme Lüfter max.</td>
<td>W</td>
<td>170</td>
</tr>
<tr>
<td>Leistungsaufnahme Lüfter nenn.</td>
<td>W</td>
<td>100</td>
</tr>
<tr>
<td>Leistungsaufnahme Lüfter</td>
<td>W</td>
<td>100</td>
</tr>
<tr>
<td>Leistungsaufnahme Umwälzpumpe</td>
<td>W</td>
<td>< 45</td>
</tr>
<tr>
<td>Leistungsaufnahme max. ohne Not-/Zusatzheizung</td>
<td>kW</td>
<td>5,3</td>
</tr>
<tr>
<td>Absicherung Not-/Zusatzheizung</td>
<td>A</td>
<td>3 x B 16</td>
</tr>
<tr>
<td>Absicherung Verdichter max.</td>
<td>A</td>
<td>1 x B 25</td>
</tr>
<tr>
<td>Absicherung Verdichter</td>
<td>A</td>
<td>1 x B 16</td>
</tr>
<tr>
<td>Absicherung WP-Lüfter</td>
<td>A</td>
<td>1 x B 16</td>
</tr>
<tr>
<td>Absicherung Steuerung</td>
<td>A</td>
<td>B 16</td>
</tr>
<tr>
<td>Nennspannung Not-/Zusatzheizung</td>
<td>V</td>
<td>400</td>
</tr>
<tr>
<td>Nennspannung Verdichter</td>
<td>V</td>
<td>230</td>
</tr>
<tr>
<td>Nennspannung WP-Lüfter</td>
<td>V</td>
<td>230</td>
</tr>
<tr>
<td>Nennspannung Steuerung</td>
<td>V</td>
<td>230</td>
</tr>
<tr>
<td>Phasen Verdichter</td>
<td>1/N/PE</td>
<td>1/N/PE</td>
</tr>
<tr>
<td>Phasen WP-Lüfter</td>
<td>1/N/PE</td>
<td>1/N/PE</td>
</tr>
<tr>
<td>Phasen Steuerung</td>
<td>1/N/PE</td>
<td>1/N/PE</td>
</tr>
<tr>
<td>Frequenz</td>
<td>Hz</td>
<td>50</td>
</tr>
<tr>
<td>Stromaufnahme gesamt</td>
<td>A</td>
<td>20</td>
</tr>
<tr>
<td>Anlaufstrom (mit/ohne Anlaufstrombegrenzer)</td>
<td>A</td>
<td>~18</td>
</tr>
<tr>
<td>Phasen Not-/Zusatzheizung</td>
<td>3/N/PE</td>
<td>3/N/PE</td>
</tr>
<tr>
<td>Ausführungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kältemittel</td>
<td>R410 A</td>
<td>R410 A</td>
</tr>
<tr>
<td>Füllmenge Kältemittel</td>
<td>kg</td>
<td>2,95</td>
</tr>
<tr>
<td>CO₂-Equivalent (CO₂e)</td>
<td>t</td>
<td>6,16</td>
</tr>
<tr>
<td>Treibhauspotenzial des Kältemittelwesens (GWP100)</td>
<td></td>
<td>2088</td>
</tr>
<tr>
<td>Schutzart (IP)</td>
<td>IP1X7B</td>
<td>IP1X7B</td>
</tr>
<tr>
<td>Filterklasse Abluft</td>
<td>ISO Coarse > 60 % (G4)</td>
<td>ISO Coarse > 60 % (G4)</td>
</tr>
<tr>
<td>Filterklasse Zuluft</td>
<td>ISO Coarse > 60 % (G4)</td>
<td>ePM10 50 % (M5)</td>
</tr>
<tr>
<td>Filterklasse Außenluft</td>
<td>ISO Coarse > 30 % (G2)</td>
<td>ISO Coarse > 30 % (G2)</td>
</tr>
<tr>
<td>Einsatzbereich Wohnfläche</td>
<td>m²</td>
<td>< 220</td>
</tr>
</tbody>
</table>
LWZ 5/8 S Trend

<table>
<thead>
<tr>
<th>Dimensionen</th>
<th>LWZ 5 S Trend</th>
<th>LWZ 8 S Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kippmaß</td>
<td>mm</td>
<td>2020</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
<td>1885</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
<td>808</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
<td>735</td>
</tr>
</tbody>
</table>

Gewichte

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewicht Funktionsmodul</td>
<td>kg</td>
<td>228</td>
</tr>
<tr>
<td>Gewicht leer</td>
<td>kg</td>
<td>228</td>
</tr>
<tr>
<td>Gewicht gefüllt</td>
<td>kg</td>
<td>250</td>
</tr>
</tbody>
</table>

Anschlüsse

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anschluss Heizung</td>
<td>DN 22</td>
<td>DN 22</td>
</tr>
<tr>
<td>Zuluft/Abluft-Anschluss</td>
<td>DN 160</td>
<td>DN 160</td>
</tr>
<tr>
<td>Kondensatablauf</td>
<td>mm</td>
<td>22</td>
</tr>
<tr>
<td>Außenluft/Fortluftanschluss</td>
<td>mm</td>
<td>410x155 oval</td>
</tr>
</tbody>
</table>

Anforderung Heizungswasserqualität

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasserhärte</td>
<td>°dH</td>
<td>≤3</td>
</tr>
<tr>
<td>Leitfähigkeit (Enthärten)</td>
<td>µS/cm</td>
<td><1000</td>
</tr>
<tr>
<td>Leitfähigkeit (Entsalzen)</td>
<td>µS/cm</td>
<td>20-100</td>
</tr>
<tr>
<td>Chlorid</td>
<td>mg/l</td>
<td><30</td>
</tr>
<tr>
<td>Sauerstoff 8-12 Wochen nach Befüllung (Enthärten)</td>
<td>mg/l</td>
<td><0,02</td>
</tr>
<tr>
<td>Sauerstoff 8-12 Wochen nach Befüllung (Entsalzen)</td>
<td>mg/l</td>
<td><0,1</td>
</tr>
<tr>
<td>pH-Wert (mit Aluminiumverbindungen)</td>
<td></td>
<td>8,0-8,5</td>
</tr>
<tr>
<td>pH-Wert (ohne Aluminiumverbindungen)</td>
<td></td>
<td>8,0-10,0</td>
</tr>
</tbody>
</table>

Werte

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärmeverbesserungsgrad bis</td>
<td>%</td>
<td>90</td>
</tr>
<tr>
<td>Empfohlene max. Norm-Heizlast des Gebäudes</td>
<td>kW</td>
<td>8</td>
</tr>
<tr>
<td>Volumenstrom Heizung (EN 14511) bei A7/W35, B0/W35 und 5 K</td>
<td>m³/h</td>
<td>0,775</td>
</tr>
<tr>
<td>Volumenstrom Heizung min.</td>
<td>m³/h</td>
<td>0,7</td>
</tr>
<tr>
<td>Zuluft/Abluft-Volumenstrom</td>
<td>m³/h</td>
<td>80-300</td>
</tr>
<tr>
<td>Luftvolumenstrom nenn</td>
<td>m³/h</td>
<td>240</td>
</tr>
<tr>
<td>Außenluft/Fortluft-Volumenstrom</td>
<td>m³/h</td>
<td>1000</td>
</tr>
<tr>
<td>Verfügbare externe Pressung Lüftung bei 230 m³/h</td>
<td>Pa</td>
<td>100</td>
</tr>
<tr>
<td>Verfügbare externe Pressung Außen-/Fortluft</td>
<td>Pa</td>
<td>50</td>
</tr>
<tr>
<td>Max. Vorlauftemperatur</td>
<td>°C</td>
<td>60</td>
</tr>
<tr>
<td>Sicherheitsventil Heizung</td>
<td>MPa</td>
<td>0,3</td>
</tr>
</tbody>
</table>
Lüftung, Trinkwassererwärmung und Heizung

LWZ 5/8 S Trend

<table>
<thead>
<tr>
<th>Funktionen Lüftung</th>
<th>LWZ 5 S Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funktion Lüften</td>
<td>Lüften, Heizen und Warmwasser</td>
</tr>
<tr>
<td>Funktion Heizen</td>
<td>X</td>
</tr>
<tr>
<td>Funktion Kühlen</td>
<td>-</td>
</tr>
<tr>
<td>Funktion Warmwasser</td>
<td>-</td>
</tr>
<tr>
<td>Funktion Solar</td>
<td>-</td>
</tr>
<tr>
<td>Wärmequelle</td>
<td>Luft</td>
</tr>
</tbody>
</table>

Einsatzbereich Modernisierung

Hausgröße Neubau m² < 240

Aufstellungsort

Invertertechnologie

Einsatzbereich Heizen

Mischwassermenge

Die Mischwassermenge bezieht sich auf eine Kaltwassereintrittstemperatur von 10 °C, eine Zapftemperatur von 40 °C und eine Zapfrate von 10 l/min.

X Speichertemperatur [°C]
Y Mischwassermenge [l]
Lüftung, Trinkwassererwärmung und Heizung
LWZ 5/8 S Trend

Leistungsdiagramm
LWZ 5 S Trend

LWZ 8 S Trend

X Außentemperatur [°C]
Y Heizleistung [kW]
1 max. W35
2 max. W45
3 max. W55
4 min. W35
5 min. W45
6 min. W55
Lüftung, Trinkwassererwärmung und Heizung
LWZ 5/8 S Trend

Verfügbare externe Förderhöhe der Umwälzpumpe

X Volumenstrom \([\text{m}^3/\text{h}]\)
Y Druck \([\text{hPa}]\)

1 Pumpenleistung 100 %
2 Pumpenleistung 85 %
3 Pumpenleistung 65 %
4 Pumpenleistung 45 %

Lüfterkennlinie

Einsatzbereich
X Luftvolumenstrom \([\text{m}^3/\text{h}]\)
Y Mittelwert statischer Druck \([\text{Pa}]\)
1 Maximalkennlinie des Lüfters
2 Anlagenkennlinien

0,30 spezifische Leistungsaufnahme 0,30 Wh/m³
0,35 spezifische Leistungsaufnahme 0,35 Wh/m³
0,40 spezifische Leistungsaufnahme 0,40 Wh/m³
0,45 spezifische Leistungsaufnahme 0,45 Wh/m³
0,50 spezifische Leistungsaufnahme 0,50 Wh/m³
0,55 spezifische Leistungsaufnahme 0,55 Wh/m³
Maße und Anschlüsse

<table>
<thead>
<tr>
<th>Befestigungsart</th>
<th>Durchmesser</th>
</tr>
</thead>
<tbody>
<tr>
<td>b01 Durchführung elektr. Leitungen</td>
<td>c12 Sicherheitsventil Ablauf</td>
</tr>
<tr>
<td>d29 Wärmübertrager Vorlauf</td>
<td>d30 Wärmübertrager Rücklauf</td>
</tr>
<tr>
<td>d45 Kondensatablauf</td>
<td>e01 Heizung Vorlauf</td>
</tr>
<tr>
<td>e02 Heizung Rücklauf</td>
<td>g03 Außenluft</td>
</tr>
<tr>
<td>g04 Fortluft</td>
<td>g05 Abluft</td>
</tr>
<tr>
<td>g06 Zuluft</td>
<td>g07 Außenluft Erdwärmeübertrager</td>
</tr>
<tr>
<td>g09 Außenluft Wohnungslüftung opt.</td>
<td>g07 Außenluft Erdwärmeübertrager</td>
</tr>
</tbody>
</table>

LWZ 5/8 S Trend

<table>
<thead>
<tr>
<th>Anschlussart</th>
<th>Steckverbindung</th>
</tr>
</thead>
<tbody>
<tr>
<td>b01 Durchführung elektr. Leitungen</td>
<td>c12 Sicherheitsventil Ablauf</td>
</tr>
<tr>
<td>d29 Wärmübertrager Vorlauf</td>
<td>d30 Wärmübertrager Rücklauf</td>
</tr>
<tr>
<td>d45 Kondensatablauf</td>
<td>e01 Heizung Vorlauf</td>
</tr>
<tr>
<td>e02 Heizung Rücklauf</td>
<td>g03 Außenluft</td>
</tr>
<tr>
<td>g04 Fortluft</td>
<td>g05 Abluft</td>
</tr>
<tr>
<td>g06 Zuluft</td>
<td>g07 Außenluft Erdwärmeübertrager</td>
</tr>
<tr>
<td>g09 Außenluft Wohnungslüftung opt.</td>
<td>g07 Außenluft Erdwärmeübertrager</td>
</tr>
</tbody>
</table>

LWZ 8 S Trend

<table>
<thead>
<tr>
<th>Anschlussart</th>
<th>Steckverbindung</th>
</tr>
</thead>
<tbody>
<tr>
<td>b01 Durchführung elektr. Leitungen</td>
<td>c12 Sicherheitsventil Ablauf</td>
</tr>
<tr>
<td>d29 Wärmübertrager Vorlauf</td>
<td>d30 Wärmübertrager Rücklauf</td>
</tr>
<tr>
<td>d45 Kondensatablauf</td>
<td>e01 Heizung Vorlauf</td>
</tr>
<tr>
<td>e02 Heizung Rücklauf</td>
<td>g03 Außenluft</td>
</tr>
<tr>
<td>g04 Fortluft</td>
<td>g05 Abluft</td>
</tr>
<tr>
<td>g06 Zuluft</td>
<td>g07 Außenluft Erdwärmeübertrager</td>
</tr>
<tr>
<td>g09 Außenluft Wohnungslüftung opt.</td>
<td>g07 Außenluft Erdwärmeübertrager</td>
</tr>
</tbody>
</table>
Lüftung, Trinkwassererwärmung und Heizung
LWZ 5/8 S Trend

Funktionsschema

1 Außenluft
2 Abluft
3 Zuluft
4 Fortluft
5 Zuluftlüfter
6 Kreuzgegenstrom-Wärmeübertrager
7 Fortluftlüfter
8 Verdampfer
9 Wärmepumpenläufter
10 Expansionsventil
11 Verflüssiger
12 Heat-Pipe-Ventil
13 Verdichter
14 Multifunktionsgruppe
15 Heizungsumwälzpumpe
16 Heizung Rücklauf
17 Wärmeübertrager Rücklauf
18 Heizung Vorlauf
19 Wärmeübertrager Vorlauf
20 Inverter
21 Rückschlagklappe
22 Luftvorwärmer
Elektrischer Anschluss

Der elektrische Anschluss der Wärmepumpe bedarf der Anmeldung beim zuständigen Energieversorgungsunternehmen.

Alle elektrischen Installationsarbeiten insbesondere die Schutzmaßnahmen sind entsprechend den VDE-Bestimmungen und Vorschriften des zuständigen Energieversorgungsunternehmens auszuführen.

Der Anschluss erfolgt nach dem Elektroanschlussplan. Hierzu muss auch die Bedienungs- und Installationsanleitung des Gerätes beachtet werden.

MFG elek. Zusatzheizung der Multifunktionsgruppe +Ub Anschluss 2. Bedienteil oder ISG
WP Wärmpumpe (Verdichter) CAN H Anschluss 2. Bedienteil oder ISG
EVU Sperre durch Energieversorger (optional) CAN L Anschluss 2. Bedienteil oder ISG
Steuerung Steuerung GND Anschluss 2. Bedienteil oder ISG
HMV Mischer
HK2 230V Pumpe Heizkreis 2 (230 V) 1 Zentrales Lüftungsgerät
KUE ohne Funktion 2 Netzanschluss, Haushalts-Tarifzähler
O/K Ofen/Kamin (optional) 3 Differenzdruckschalter Feuerstätte
ext. UMV externes Umschaltventil WW-Speicher 4 Druckanschluss „Ofen”
SL Schnelllüftung (optional) 5 Druckanschluss „Raum”
FA Fenster auf (optional) 6 Abgas-Temperaturfühler
TA Außentemperaturfühler
TV Vorlauftemperaturfühler Mischerkreis
TR Raumtemperaturfühler
TS ohne Funktion
SOL ohne Funktion
HK2 Regelungsanschluss Pumpe 2. HK
(Ansteuerung mit 0-10 V oder PWM)
Standardschaltung 1: Raumheizung mit 1 Heizkreis

Die Legende zu den Standardschaltungen finden Sie im Anhang.
Standardschaltung 2: Raumheizung mit 1 Heizkreis mit Trinkwarmwasserspeicher

Die Legende zu den Standardschaltungen finden Sie im Anhang.
Standardschaltung 3: Raumheizung mit 1 Heizkreis und Pufferspeicher, mit Trinkwarmwasserspeicher

Die Legende zu den Standardschaltungen finden Sie im Anhang.
Standardschaltung 4: Raumheizung mit 1 Heizkreis, mit Trinkwarmwasserspeicher und thermischer Solaranlage

Die Legende zu den Standardschaltungen finden Sie im Anhang.
Standardschaltung 5: Raumheizung mit 1 Heizkreis und Pufferspeicher, Trinkwassererwärmung mit Durchlaufspeicher

Die Legende zu den Standardschaltungen finden Sie im Anhang.
Standardschaltung 6: Raumheizung mit 1 Heizkreis und Pufferspeicher, Trinkwassererwärmung mit Durchlaufspeicher und thermischer Solaranlage

Die Legende zu den Standardschaltungen finden Sie im Anhang.
Installation

☐ Der frostfreie Aufstellungsort ist festgelegt.

☐ Fläche, Volumen und Raumhöhe des Aufstellungsraumes entsprechen den technischen Vorgaben des Gerätes inklusive montierter Luftleitungen und sonstigem Zubehör.

☐ Die zulässige Bodenbelastung ist höher als das Gewicht des gefüllten Gerätes.

☐ Eine Körperschall-Übertragung auf das Gebäude ist weitestgehend ausgeschlossen.

☐ Der elektrische Anschluss und eventuelle Sondertarife sind mit dem Energieversorgungsunternehmen abgestimmt.

☐ Externe Hocheffizienzpumpen wurden elektrisch über Hilfsschütze angeschlossen.

☐ Das Kondenswasser wird mit natürlichem Gefälle in den bestehenden Abfluss in der Nähe des Gerätes eingeleitet.

☐ Das Kondenswasser wird mit einer zusätzlichen Kondensatpumpe abgeleitet. Die Kondensatpumpe ist für die Leitungslänge und Förderhöhe geeignet.

☐ Die Position der Fernbedienung und die elektrische Verbindung zum Gerät sind definiert.

Heizung

☐ Die Geräte-Heizleistung ist im Auslegungspunkt größer als die Heizlast nach EN12831.

☐ Der Wärmebedarf wird zu mindestens 95% durch die Wärmepumpe abgedeckt.

☐ Die Heizflächen sind für eine Vorlauftemperatur von ≤ 55 °C ausgelegt.

☐ Der heizungsseitige Mindestvolumenstrom des Gerätes ist sichergestellt.

☐ Es wurde geprüft, ob die Größe des integrierten Membran-Ausdehnungsgefässes ausreichend ist.

Lüftung - allgemein

☐ Die zu beheizenden Geschosse und Räume sind definiert.

☐ Der Luftvolumenstrom ist für jeden Raum festgelegt.

☐ Das zu belüftende Gesamt-Raumvolumen entspricht den Mindest- und Maximalvorgaben des Gerätes.

☐ Die Luftmenge pro Ventil wurde definiert.

☐ Die Gesamtluftmenge wurde nach DIN 1946-Teil 6 bestimmt.

☐ Die Strömungsgeschwindigkeit im Luft-Verteilsystem ist < 3 m/s

☐ Die Strömungsgeschwindigkeit in den Sammelleitungen Zu- und Abluft ist < 5 m/s.

☐ Ein luftseitiger Kurzschluss zwischen Fortluft und Außenluft ist ausgeschlossen.

☐ Die Außenluftansaugung erfolgt über Erdgleiche.

Lüftungsstrasse

☐ Die Lüftungsstrasse und die Luftleitungsduermesser sind definiert. Auf eine möglichst einfach zu realisierende bauseitige Verlegung wurde geachtet.

☐ Der Fortluftanschluss durch die Gebäudehülle ist einfach zu realisieren und übersteigt nicht die maximal zulässige Luftleitungsänge.

☐ Bei der Positionierung der Zu- und Abluftventile wurde auf die optimale Raumdurchströmung bei einer geringen Strömungsgeschwindigkeit geachtet.

☐ Das Küchen-Abluftventil ist nicht in unmittelbarer Nähe der Dunstabzugshaube positioniert.

☐ Die Dunstabzugshaube ist mit einer selbsttätigen Rückschlagklappe ausgestattet oder ist eine Umluft-Dunstabzugshaube. Es erfolgt kein Eintrag von Außenluft durch die Dunstabzugshaube.

☐ Reinigungs- und Wartungsoffnungen für alle Luftleitungen sind definiert.

☐ Die Position von Telefonieschalldämpfern für Wohn- und Schlafzimmer sind im Gebäudeplan definiert.

☐ Die Überströmöffnungen sind für den geplanten Luftvolumenstrom ausreichend groß und im Gebäudeplan definiert.

Kachel- und Kaminöfen

☐ Kachel- oder Kaminofen wird raumluftunabhängig betrieben.

☐ Kabel wurde vom Kachel- oder Kaminofen zum Lüftungsgerät verlegt, um bei Bedarf eine geeignete Sicherheitseinrichtung anzuschließen.

☐ Der raumluftabhängige Kachel- oder Kaminofen ist mit einer Sicherheitseinrichtung ausgestattet, mit separater Verbrennungsluftsversorgung versehen und mit der Lüftungsanlage elektrisch verbunden.

☐ Freigabe vom Schornsteinfeger liegt vor.
Notizen
Kurz und bündig
- Integralsystem mit Luft/Wasser-Wärmepumpe für Warmwasserbereitung und Heizung
- Abmaße und Anschlusstechnik wie bei der Trend-Baureihe
- Matrixdisplay mit “Touch Wheel” für intuitive Bedienung
- Integrierte Hocheffizienzpumpe für energiesparende Wärmeverteilung
- Integrierter Warmwasserspeicher für hohen Warmwasserkomfort
- Elektroanschlussfeld bei geschlossenem Gerät erreichbar
- Anbindung einer Photovoltaikanlage optional über ISG

Sicherheit und Qualität

Auszeichnungen

<table>
<thead>
<tr>
<th>ANWENDUNG</th>
<th>Leistungsgeregeltes Integralsystem mit Luft/Wasser-Wärmepumpe zur zentralen Trinkwassererwärmung und Heizung im Neubau und Einfamilienhäusern.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFFIZIENZ</td>
<td>Hohe Effizienz durch optimierten Kältekreis.</td>
</tr>
<tr>
<td>INSTALLATION</td>
<td>Einfaches Erreichen des Elektroanschlussfeldes ohne Öffnen des Gerätes. Stabiles Stahlblechgehäuse in zeitlosem Design.</td>
</tr>
</tbody>
</table>

Arbeitsweise

Weiteres Zubehör

| 227664 | FES Komfort |
| 229336 | ISG web |

Trinkwassererwärmung und Heizen

LWZ 5 S Smart
Technische Daten

<table>
<thead>
<tr>
<th>LWZ 5 S Smart 201293</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärmeleistungen</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Wärmeleistung bei A-7/W35 (EN 14511)</td>
</tr>
<tr>
<td>Wärmeleistung bei A2/W35 (EN 14511)</td>
</tr>
<tr>
<td>Wärmeleistung bei A7/W35 (EN 14511)</td>
</tr>
<tr>
<td>Wärmeleistung Not-/Zusatzheizung</td>
</tr>
<tr>
<td>Wärmeleistung max.</td>
</tr>
<tr>
<td>Leistungsaufnahmen</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Leistungsaufnahme bei A-7/W35 (EN 14511)</td>
</tr>
<tr>
<td>Leistungsaufnahme bei A2/W35 (EN 14511)</td>
</tr>
<tr>
<td>Leistungsaufnahme bei A7/W35 (EN 14511)</td>
</tr>
<tr>
<td>Leistungszahlen</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Leistungszahl bei A-7/W35 (EN 14511)</td>
</tr>
<tr>
<td>Leistungszahl bei A2/W35 (EN 14511)</td>
</tr>
<tr>
<td>Leistungszahl bei A7/W35 (EN 14511)</td>
</tr>
<tr>
<td>Schallangaben</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Schallleistungspegel (EN 12102)</td>
</tr>
<tr>
<td>Schallleistungspegel Vollast (EN 12102)</td>
</tr>
<tr>
<td>Einsatzgrenzen</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Einsatzgrenze Wärmequelle min.</td>
</tr>
<tr>
<td>Einsatzgrenze Wärmequelle max.</td>
</tr>
<tr>
<td>Max. Druckverlust Außenluft</td>
</tr>
<tr>
<td>Aufstellraum Volumen min.</td>
</tr>
<tr>
<td>Warmwasser-Temperatur mit Wärmepumpe bei A2</td>
</tr>
<tr>
<td>Hydraulische Daten</td>
</tr>
<tr>
<td>Speichervolumen</td>
</tr>
<tr>
<td>Energetische Daten</td>
</tr>
<tr>
<td>Energieeffizienzklasse Wärmepumpe W55</td>
</tr>
<tr>
<td>Energieeffizienzklasse Warmwasserbereitung bei Lastprofil XL</td>
</tr>
<tr>
<td>Energieeffizienzklasse Warmwasserbereitung (Lastprofil), durchschnittliches Klima</td>
</tr>
<tr>
<td>Energieeffizienzklasse</td>
</tr>
<tr>
<td>Elektrische Daten</td>
</tr>
<tr>
<td>Leistungsaufnahme Umwälzpumpe</td>
</tr>
<tr>
<td>Leistungsaufnahme max. ohne Not-/Zusatzheizung</td>
</tr>
<tr>
<td>Absicherung Not-/Zusatzheizung</td>
</tr>
<tr>
<td>Absicherung Verdichter max.</td>
</tr>
<tr>
<td>Absicherung Verdichter</td>
</tr>
<tr>
<td>Absicherung WP-Lüfter</td>
</tr>
<tr>
<td>Absicherung Steuerung</td>
</tr>
<tr>
<td>Nennspannung Not-/Zusatzheizung</td>
</tr>
<tr>
<td>Nennspannung Verdichter</td>
</tr>
<tr>
<td>Nennspannung WP-Lüfter</td>
</tr>
<tr>
<td>Nennspannung Steuerung</td>
</tr>
<tr>
<td>Phasen Verdichter</td>
</tr>
<tr>
<td>Phasen WP-Lüfter</td>
</tr>
<tr>
<td>Phasen Steuerung</td>
</tr>
<tr>
<td>Frequenz</td>
</tr>
<tr>
<td>Stromaufnahme gesamt</td>
</tr>
<tr>
<td>Anlaufstrom (mit/ohne Anlaufstrombegrenzer)</td>
</tr>
<tr>
<td>Phasen Not-/Zusatzheizung</td>
</tr>
<tr>
<td>Ausführungen</td>
</tr>
<tr>
<td>Kältemittel</td>
</tr>
<tr>
<td>Füllmenge Kältemittel</td>
</tr>
<tr>
<td>CO₂-Equivalent (CO₂e)</td>
</tr>
<tr>
<td>Treibhauspotenzial des Kältemittels (GWP100)</td>
</tr>
<tr>
<td>Schutzart (IP)</td>
</tr>
<tr>
<td>Dimensionen</td>
</tr>
<tr>
<td>Kippmaß</td>
</tr>
<tr>
<td>Höhe</td>
</tr>
<tr>
<td>Breite</td>
</tr>
<tr>
<td>Tiefe</td>
</tr>
</tbody>
</table>
LWZ 5 S Smart

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>LWZ 5 S Smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewichte</td>
<td></td>
</tr>
<tr>
<td>Gewicht Funktionsmodul</td>
<td>kg 210</td>
</tr>
<tr>
<td>Gewicht Speichermodul</td>
<td>kg 177</td>
</tr>
<tr>
<td>Gewicht leer</td>
<td>kg 387</td>
</tr>
<tr>
<td>Gewicht gefüllt</td>
<td>kg 637</td>
</tr>
<tr>
<td>Anschlüsse</td>
<td></td>
</tr>
<tr>
<td>Anschluss Heizung</td>
<td>DN 22</td>
</tr>
<tr>
<td>Anschluss Warmwasser</td>
<td>DN 22</td>
</tr>
<tr>
<td>Kondensatablauf</td>
<td>mm 22</td>
</tr>
<tr>
<td>Außenluft/Fortluftanschluss</td>
<td>mm 410x155 oval</td>
</tr>
<tr>
<td>Anforderung Heizungswasserqualität</td>
<td></td>
</tr>
<tr>
<td>Wasserhärte</td>
<td>°dH ≤3</td>
</tr>
<tr>
<td>Leitfähigkeit (Entzähnen)</td>
<td>µS/cm <1000</td>
</tr>
<tr>
<td>Leitfähigkeit (Entsalzen)</td>
<td>µS/cm 20-100</td>
</tr>
<tr>
<td>Chlorid</td>
<td>mg/l <30</td>
</tr>
<tr>
<td>Sauerstoff 8-12 Wochen nach Befüllung (Entsalzen)</td>
<td>mg/l <0,02</td>
</tr>
<tr>
<td>Sauerstoff 8-12 Wochen nach Befüllung (Entsalzen)</td>
<td>mg/l <0,1</td>
</tr>
<tr>
<td>pH-Wert (mit Aluminiumverbindungen)</td>
<td>8,0-8,5</td>
</tr>
<tr>
<td>pH-Wert (ohne Aluminiumverbindungen)</td>
<td>8,0-10,0</td>
</tr>
<tr>
<td>Werte</td>
<td></td>
</tr>
<tr>
<td>Empfohlene max. Norm-Heizlast des Gebäudes</td>
<td>kW 8</td>
</tr>
<tr>
<td>Volumenstrom Heizung (EN 14511) bei A7/W35, B0/W35 und 5 K</td>
<td>m³/h 0,775</td>
</tr>
<tr>
<td>Volumenstrom Heizung min.</td>
<td>m³/h 0,75</td>
</tr>
<tr>
<td>Außenluft/Fortluft-Volumenstrom</td>
<td>m³/h 1000</td>
</tr>
<tr>
<td>Verfügbare externe Pressung Außen-/Fortluft</td>
<td>Pa 50</td>
</tr>
<tr>
<td>Sicherheitsventil Warmwasser</td>
<td>MPa 1</td>
</tr>
<tr>
<td>Max. Vorlauftemperatur</td>
<td>°C 60</td>
</tr>
<tr>
<td>Sicherheitsventil Heizung</td>
<td>MPa 0,3</td>
</tr>
</tbody>
</table>
Trinkwassererwärmung und Heizen
LWZ 5 S Smart

<table>
<thead>
<tr>
<th>Funktion Heizen</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funktion Kühlen</td>
<td></td>
</tr>
<tr>
<td>Funktion Warmwasser</td>
<td>X</td>
</tr>
<tr>
<td>Funktion Solar</td>
<td></td>
</tr>
<tr>
<td>Wärmequelle</td>
<td>Luft</td>
</tr>
<tr>
<td>Einsatzbereich Modernisierung</td>
<td></td>
</tr>
<tr>
<td>Einsatzbereich Neubau</td>
<td>X</td>
</tr>
<tr>
<td>Hausgröße Neubau</td>
<td>m²</td>
</tr>
<tr>
<td>Aufstellungsort</td>
<td>Innen</td>
</tr>
<tr>
<td>Invertertechnologie</td>
<td></td>
</tr>
</tbody>
</table>

Einsatzbereich Heizen

Die Mischwassermenge bezieht sich auf eine Kaltwassereintrittstemperatur von 10 °C, eine Zapftemperatur von 40 °C und eine Zapfrate von 10 l/min.

Mischwassermenge

X Speichertemperatur [°C]
Y Mischwassermenge [l]
Trinkwassererwärmung und Heizen
LWZ 5 S Smart

Leistungsdiagramm

X Außentemperatur [°C]
Y Heizleistung [kW]
1 max. W35
2 max. W45
3 max. W55
4 min. W35
5 min. W45
6 min. W55
Trinkwassererwärmung und Heizen
LWZ 5 S Smart

Verfügbare externe Förderhöhe der Umwälzpumpe

![Diagramm der Förderhöhe der Umwälzpumpe]

- **X**: Volumenstrom [m³/h]
- **Y**: Druck [hPa]

1. Pumpenleistung 100 %
2. Pumpenleistung 85 %
3. Pumpenleistung 65 %
4. Pumpenleistung 45 %

Lüfterkennlinie

![Diagramm der Lüfterkennlinie]

- **X**: Luftvolumenstrom [m³/h]
- **Y**: Mittelwert statischer Druck [Pa]

1. Maximalkennlinie des Lüfters
2. Anlagenkennlinien

- **0,30**: spezifische Leistungsaufnahme 0,30 Wh/m³
- **0,35**: spezifische Leistungsaufnahme 0,35 Wh/m³
- **0,40**: spezifische Leistungsaufnahme 0,40 Wh/m³
- **0,45**: spezifische Leistungsaufnahme 0,45 Wh/m³
- **0,50**: spezifische Leistungsaufnahme 0,50 Wh/m³
- **0,55**: spezifische Leistungsaufnahme 0,55 Wh/m³
<table>
<thead>
<tr>
<th>Maße und Anschlüsse</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWZ 5 S Smart</td>
</tr>
</tbody>
</table>

Durchführung elektr. Leitungen

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Durchmesser</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaltwasser Zulauf</td>
<td>Durchmesser</td>
<td>22</td>
</tr>
<tr>
<td>Warmwasser Auslauf</td>
<td>Durchmesser</td>
<td>22</td>
</tr>
<tr>
<td>Sicherheitsventil Ablauf</td>
<td>Durchmesser</td>
<td>19</td>
</tr>
<tr>
<td>Kondensatablauf</td>
<td>Durchmesser</td>
<td>22</td>
</tr>
<tr>
<td>Heizung Vorlauf</td>
<td>Durchmesser</td>
<td>22</td>
</tr>
<tr>
<td>Heizung Rücklauf</td>
<td>Durchmesser</td>
<td>22</td>
</tr>
<tr>
<td>Außenluft</td>
<td>Nennweite</td>
<td>DN 315</td>
</tr>
<tr>
<td>Fortluft</td>
<td>Nennweite</td>
<td>DN 315</td>
</tr>
</tbody>
</table>
Trinkwassererwärmung und Heizen
LWZ 5 S Smart

Aufstellzeichnungen

Außen-/Fortluftanschluss mit Umlenkhaube

Außen-/Fortluftanschluss mit Luftschlauch
Hydraulischer Anschluss

Die schwingungsarme Konstruktion der Wärmepumpe vermeidet Körperschall-Übertragungen weitgehend. Vor- und Rücklauf sind an die dafür vorgesehenen Kupferrohre mit Winkel-Steckverbindern anzuschließen.

Das Gerät ist mit einer drehzahlgeregelten Effizienzpumpe ausgestattet und kann direkt an das Heizungssystem angeschlossen werden. Der Anschluss an die Wärmenumtumschanlage muss entsprechend den Planungsunterlagen ausgeführt werden. Nutzen Sie die bei den verschiedenen Geräten aufgeführten Standardschaltungen oder unseren Schaltplanfinder im Internet.

Vor dem Anschluss an die Wärmepumpe muss die Heizungsanlage gründlich gespült und auf Dichtheit geprüft werden.

Auf den richtigen Anschluss des Heizungsvorlaufs und -rücklaufs sowie korrekte Rohrquerschnitte muss geachtet werden.

Der Mindestvolumenstrom muss in jedem Betriebszustand der Anlage sichergestellt werden, z. B. mit einer hydraulischen Weiche.

Beachten Sie die Hinweise in der Bedienungs- und Installationsanleitung des Gerätes.

Bezüglich der sicherheitstechnischen Ausrüstung sind die zutreffenden Normen und Richtlinien zu beachten.

Umwälzpumpe

Entsprechend der Auslegung des Wärmeverteilungssystems wird der Heizungs-Volumenstrom an der Regeleinheit der integrierten Umwälzpumpe eingestellt.

Zweiter Heizkreis

Mit der integrierten Regelung ist die Ansteuerung eines zweiten Heizkreises mit abweichender Vorlauftemperatur möglich. Der zweite Heizkreis muss bauseits mit einem Motor-Mischventil und einer Umwälzpumpe sowie einem weiteren Vorlauffühler ausgestattet werden.

Anlegefühler für zweiten Heizkreis

Der Anlegefühler für den zweiten Heizkreis wird am Vorlauf des zweiten Heizkreises positioniert und mit einem Spannband befestigt.

Außentemperaturfühler

Im Lieferumfang des Gerätes ist ein Außentemperaturfühler enthalten. Der Außentemperaturfühler ist an einer Nord- oder Nordost-Wand hinter einem beheizten Raum etwa 2,5 m vom Erdboden und 1 m seitlich von Fenstern und Türen anzubringen. Der Außentemperaturfühler soll der Witterung frei und ungeschützt ausgesetzt sein.

Zirkulationsanschluss

Eine Warmwasserzirkulation ist aus energetischen Gründen nicht zu empfehlen. Ist aufgrund ungünstiger Leitungsführung dennoch eine Warmwasserzirkulation erforderlich, muss diese in jedem Fall normgerecht, d. h. zeit- und temperaturgesteuert ausgeführt werden.

Funktionsschema
Elektrischer Anschluss
Der elektrische Anschluss der Wärmepumpe bedarf der Anmeldung beim zuständigen Energieversorgungsunternehmen.
Allerdings elektrischen Installationsarbeiten insbesondere die Schutzmaßnahmen sind entsprechend den VDE-Bestimmungen und Vorschriften des zuständigen Energieversorgungsunternehmens auszuführen.
Der Anschluss erfolgt nach dem Elektroanschlussplan. Hierzu muss auch die Bedienungs- und Installationsanleitung des Gerätes beachtet werden.
Trinkwassererwärmung und Heizen
LWZ 5 S Smart

Standardschaltung 1: Trinkwassererwärmung, Raumheizung mit 1 Heizkreis

Die Legende zu den Standardschaltungen finden Sie im Anhang.
Standardschaltung 2: Trinkwassererwärmung, Raumheizung mit 2 Heizkreisen und hydraulischer Weiche

Die Legende zu den Standardschaltungen finden Sie im Anhang.
Standardschaltung 3: Trinkwassererwärmung, Raumheizung mit 1 Heizkreis, Unterstützung durch thermische Solaranlage und Feststoffkessel mit Pufferspeicher

Die Legende zu den Standardschaltungen finden Sie im Anhang.
Installation

☐ Der frostfreie Aufstellungsort ist festgelegt.

☐ Fläche, Volumen und Raumhöhe des Aufstellungsräumes entsprechen den technischen Vorgaben des Gerätes inklusive montierter Luftleitungen und sonstigem Zubehör.

☐ Die zulässige Bodenbelastung ist höher als das Gewicht des gefüllten Gerätes.

☐ Eine Körperschall-Übertragung auf das Gebäude ist weitestgehend ausgeschlossen.

☐ Die elektrische Anschluss und eventuelle Sondertarife sind mit dem Energieversorgungsunternehmen abgestimmt.

☐ Externe Hocheffizienzpumpen wurden elektrisch über Hilfsschütze angeschlossen.

☐ Das Kondenswasser wird mit natürlichem Gefälle in den bestehenden Abfluss in der Nähe des Gerätes eingeleitet.

☐ Das Kondenswasser wird mit einer zusätzlichen Kondensatspumpe abgeleitet. Die Kondensatspumpe ist für die Leitungslänge und Förderhöhe geeignet.

☐ Die Position der Fernbedienung und die elektrische Verbindung zum Gerät sind definiert.

Warmwasser

☐ Der Warmwasserbedarf wird durch das Gerät abgedeckt.

Heizung

☐ Die Geräte-Heizleistung ist im Auslegungspunkt größer als die Heizlast nach EN12831.

☐ Der Wärmebedarf wird zu mindestens 95% durch die Wärmepumpe abgedeckt.

☐ Die Heizflächen sind für eine Vorlauftemperatur von ≤ 55 °C ausgelegt.

☐ Der heizungsseitige Mindestvolumenstrom des Gerätes ist sichergestellt.

☐ Es wurde geprüft, ob die Größe des integrierten Membran-Ausdehnungsgefässes ausreichend ist.
FES Komfort

<table>
<thead>
<tr>
<th>FES Komfort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
</tr>
<tr>
<td>Breite</td>
</tr>
<tr>
<td>Tiefe</td>
</tr>
</tbody>
</table>

ISG plus

Bedienung: Reglerbedienung mit Computer, Notebook oder Tablet Browser über die lokale Website des ISG.

<table>
<thead>
<tr>
<th>ISG plus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
</tr>
<tr>
<td>Breite</td>
</tr>
<tr>
<td>Tiefe</td>
</tr>
<tr>
<td>Stromaufnahme max.</td>
</tr>
<tr>
<td>Einsatzbereich min./max.</td>
</tr>
<tr>
<td>CAN</td>
</tr>
<tr>
<td>RS232</td>
</tr>
<tr>
<td>10/100 Ethernet</td>
</tr>
<tr>
<td>Steuereingang</td>
</tr>
</tbody>
</table>

ISG web

Anwendung: Ethernetgateway im Wandgehäuse für die lokale Kommunikation und die Verbindung mit dem Internet. Anschließbar an den Wärmepumpen-Manager (WPM) für kompatible Wärmepumpentypen und die LWZ Integralgeräte.

Bedienung: Reglerbedienung mit Computer, Notebook oder Tablet Browser über die lokale Website des ISG.

<table>
<thead>
<tr>
<th>ISG web</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
</tr>
<tr>
<td>Breite</td>
</tr>
<tr>
<td>Tiefe</td>
</tr>
<tr>
<td>Stromaufnahme max.</td>
</tr>
<tr>
<td>Einsatzbereich min./max.</td>
</tr>
<tr>
<td>CAN</td>
</tr>
<tr>
<td>RS232</td>
</tr>
<tr>
<td>10/100 Ethernet</td>
</tr>
</tbody>
</table>
Integralgeräte Zubehör

AWG 315 SR

Isolierte Wanddurchführung mit lackiertem Aluminium-Wetterschutzgitter mit Anschlussmöglichkeit für Luftschlauch DN 315.

<table>
<thead>
<tr>
<th>AWG 315 SR</th>
<th>AWG 315 GL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>690</td>
</tr>
<tr>
<td>Breite</td>
<td>483</td>
</tr>
<tr>
<td>Tiefe</td>
<td>627</td>
</tr>
<tr>
<td>Gewicht</td>
<td>12</td>
</tr>
<tr>
<td>Wandstärke</td>
<td>280 - 500</td>
</tr>
<tr>
<td>Druckverlust Fortluft bei 1000 m³/h</td>
<td>16</td>
</tr>
<tr>
<td>Druckverlust Außenluft bei 1000 m³/h</td>
<td>16</td>
</tr>
<tr>
<td>Durchgangsoffnung min.</td>
<td>450x450</td>
</tr>
<tr>
<td>Max. Luftmenge</td>
<td>1300</td>
</tr>
<tr>
<td>Farbe</td>
<td>silber-metallic</td>
</tr>
</tbody>
</table>

AWG 315 L

<table>
<thead>
<tr>
<th>AWG 315 L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
</tr>
<tr>
<td>Breite</td>
</tr>
<tr>
<td>Tiefe</td>
</tr>
<tr>
<td>Gewicht</td>
</tr>
<tr>
<td>Wandstärke</td>
</tr>
<tr>
<td>Druckverlust Fortluft bei 1000 m³/h</td>
</tr>
<tr>
<td>Druckverlust Außenluft bei 1000 m³/h</td>
</tr>
<tr>
<td>Durchgangsoffnung min.</td>
</tr>
<tr>
<td>Max. Luftmenge</td>
</tr>
<tr>
<td>Farbe</td>
</tr>
</tbody>
</table>

LLB AWG 315 L

Das Luftleitblech lenkt die aus dem Gebäude ausströmende Fortluft um und reduziert so an der Außenwand die Bildung von Feuchtigkeit, die durch Kondensation entstehen kann.

<table>
<thead>
<tr>
<th>LLB AWG 315 L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geeignet für</td>
</tr>
<tr>
<td>Tiefe</td>
</tr>
</tbody>
</table>
Wärmegedämmter flexibler Luftschlauch für die Außen- und Fortluftführung mit einer 50 mm schalldämmenden und thermischen Isolierschicht. Die graufarbene Außenhülle besteht aus einem Aluminiumlaminat, die Innenhülle aus einem Polypropylen Tuch, die Zwischenlage aus Mineralwolle dient als Schall- und Wärmedämmung. Die Schlauchenden sind zur Befestigung oval verformbar.

<table>
<thead>
<tr>
<th>Längen (m)</th>
<th>Innendurchmesser (mm)</th>
<th>Außendurchmesser (mm)</th>
<th>Einsatzgrenze °C</th>
<th>Wandstärke (mm)</th>
<th>Einfügungsdämpfung bei 1000 Hz (dB)</th>
<th>Einfügungsdämpfung bei 63 Hz (dB)</th>
<th>Einfügungsdämpfung bei 125 Hz (dB)</th>
<th>Einfügungsdämpfung bei 250 Hz (dB)</th>
<th>Einfügungsdämpfung bei 500 Hz (dB)</th>
<th>Einfügungsdämpfung bei 1000 Hz (dB)</th>
<th>Einfügungsdämpfung bei 8000 Hz (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>315</td>
<td>415</td>
<td>-10 bis 80</td>
<td>50</td>
<td>41,4</td>
<td>7,8</td>
<td>8,2</td>
<td>25,6</td>
<td>38,3</td>
<td>45,5</td>
<td>25,0</td>
</tr>
</tbody>
</table>

Wärmegedämmter flexibler Luftschlauch für die Außen- und Fortluftführung mit einer 50 mm schalldämmenden und thermischen Isolierschicht. Die graufarbene Außenhülle besteht aus einem Aluminiumlaminat, die Innenhülle aus einem Polypropylen Tuch, die Zwischenlage aus Mineralwolle dient als Schall- und Wärmedämmung. Die Schlauchenden sind zur Befestigung oval verformbar.

<table>
<thead>
<tr>
<th>Längen (m)</th>
<th>Innendurchmesser (mm)</th>
<th>Außendurchmesser (mm)</th>
<th>Einsatzgrenze °C</th>
<th>Wandstärke (mm)</th>
<th>Einfügungsdämpfung bei 1000 Hz (dB)</th>
<th>Einfügungsdämpfung bei 63 Hz (dB)</th>
<th>Einfügungsdämpfung bei 125 Hz (dB)</th>
<th>Einfügungsdämpfung bei 250 Hz (dB)</th>
<th>Einfügungsdämpfung bei 500 Hz (dB)</th>
<th>Einfügungsdämpfung bei 1000 Hz (dB)</th>
<th>Einfügungsdämpfung bei 8000 Hz (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,5</td>
<td>315</td>
<td>415</td>
<td>-10 bis 80</td>
<td>50</td>
<td>41,4</td>
<td>7,8</td>
<td>8,2</td>
<td>25,6</td>
<td>38,3</td>
<td>45,5</td>
<td>25,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Längen (m)</th>
<th>Innendurchmesser (mm)</th>
<th>Außendurchmesser (mm)</th>
<th>Einsatzgrenze °C</th>
<th>Wandstärke (mm)</th>
<th>Einfügungsdämpfung bei 1000 Hz (dB)</th>
<th>Einfügungsdämpfung bei 63 Hz (dB)</th>
<th>Einfügungsdämpfung bei 125 Hz (dB)</th>
<th>Einfügungsdämpfung bei 250 Hz (dB)</th>
<th>Einfügungsdämpfung bei 500 Hz (dB)</th>
<th>Einfügungsdämpfung bei 1000 Hz (dB)</th>
<th>Einfügungsdämpfung bei 8000 Hz (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>315</td>
<td>415</td>
<td>-20 bis 70</td>
<td>50</td>
<td>36,0</td>
<td>19,6</td>
<td>35,6</td>
<td>32,0</td>
<td>29,6</td>
<td>38,3</td>
<td>29,2</td>
</tr>
</tbody>
</table>
Integralgeräte Zubehör

LWF SF 315-1

<table>
<thead>
<tr>
<th>LWF SF 315-1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Innendurchmesser</td>
<td>mm</td>
</tr>
<tr>
<td>315</td>
<td></td>
</tr>
<tr>
<td>Außendurchmesser</td>
<td>mm</td>
</tr>
<tr>
<td>415</td>
<td></td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
</tr>
<tr>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Gewicht</td>
<td>kg</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

LULH 315 o
Luftumlenkhaube für die Außen- und Fortluftführung. Einsetzbar bei niedrigen Raumhöhen ab 2200 mm. Passend zum Luftschlauch DN 315. Gehäuse aus Stahlblech, weiß, einbrennlackiert, innen gedämmt.

<table>
<thead>
<tr>
<th>LULH 315 o</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beschreibung</td>
<td>Luftumlenkhaube Außen-/Fortluft</td>
</tr>
</tbody>
</table>

LSK 303/403
Einschubmodul als Alternative zum Kreuz-Gegenstrom-Wärmeübertrager, um die Wärmeübertragung im Sommer zu vermeiden.

<table>
<thead>
<tr>
<th>LSK 303/403</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>366</td>
<td></td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>366</td>
<td></td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
<tr>
<td>350</td>
<td></td>
</tr>
<tr>
<td>Gewicht</td>
<td>kg</td>
</tr>
<tr>
<td>0,5</td>
<td></td>
</tr>
</tbody>
</table>

LWTF Integralgeräte

<table>
<thead>
<tr>
<th>LWTF Integralgeräte</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beschreibung</td>
<td>Austausch-Enthalpie-Wärmeübertrager</td>
</tr>
</tbody>
</table>

ZLWZ Zirku Set
Anschlusset für eine Zirkulationspumpe an die Integralsysteme 304/404/504, bestehend aus einer Rohrbogenbaugruppe mit Dichtung und Isolierschlauch. Die Rohrbaugruppe wird innerhalb der Seitenwand installiert. Der Anschluss befindet sich auf der Oberseite des Gerätes hinten links.

<table>
<thead>
<tr>
<th>ZLWZ Zirku Set</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hersteller</td>
<td>STIEBEL ELTRON</td>
</tr>
</tbody>
</table>
Integralgeräte Zubehör

FMS G4-10 ABL Inverter

HochleistungsfILTER-Medium aus bruchsicheren Polyesterfasern mit teilweise progressivem Aufbau, thermisch gebunden, temperaturbeständig bis 100 °C.

<table>
<thead>
<tr>
<th></th>
<th>FMS G4-10 ABL Inverter</th>
<th>FMS M5-2 ZUL Inverter</th>
<th>FMS F7-2 ZUL Inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anwendung</td>
<td>Lüftungsgeräte</td>
<td>Lüftungsgeräte</td>
<td>Lüftungsgeräte</td>
</tr>
<tr>
<td>Filterklasse</td>
<td>G4</td>
<td>F5</td>
<td>F7</td>
</tr>
<tr>
<td>Filterklasse</td>
<td>ISO Coarse > 60 % (G4)</td>
<td>ePM10 ≥ 50 % (M5)</td>
<td>ePM1 ≥ 50 % (F7)</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm 372</td>
<td>372</td>
<td>372</td>
</tr>
<tr>
<td>Breite</td>
<td>mm 184</td>
<td>184</td>
<td>184</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm 20</td>
<td>24</td>
<td>26</td>
</tr>
</tbody>
</table>

ZLWZ Trans

Transporthilfe für die Funktionsmodule von Lüftungskompaktgeräten der Baureihen Trend, eco und flex, bestehend aus zwei stabilen Winkelblechen mit passenden Befestigungsschrauben.

<table>
<thead>
<tr>
<th></th>
<th>ZLWZ Trans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beschreibung</td>
<td>Transporthilfe</td>
</tr>
<tr>
<td>Volumen</td>
<td>l 13,9</td>
</tr>
<tr>
<td>Gewicht ohne Verpackung</td>
<td>kg 3,9</td>
</tr>
<tr>
<td>Gewicht mit Verpackung</td>
<td>kg 4,6</td>
</tr>
</tbody>
</table>

ZKA WP

<table>
<thead>
<tr>
<th></th>
<th>ZKA WP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beschreibung</td>
<td>Kondensatablauf mit Trichtersiphon</td>
</tr>
</tbody>
</table>

www.stiebel-eltron.de
Integralgeräte Zubehör
Systemvorstellung
Produktübersicht

Gerätytypen und Einsatzzwecke

<table>
<thead>
<tr>
<th></th>
<th>LWZ 180</th>
<th>LWZ 280</th>
<th>LWZ 70 E</th>
<th>LWZ 100 plus RE</th>
<th>LWZ 100 plus LI</th>
<th>LWZ 130</th>
<th>LWZ 130 Ent- halpte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funktionen Lüftung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funktion Heizen</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funktion Kühlen</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funktion Warmwasser</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funktion Solar</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einsatzbereich Modernisierung</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Einsatzbereich Neubau</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Hausgröße Neubau</td>
<td>m²</td>
<td><200</td>
<td><240</td>
<td><100</td>
<td><120</td>
<td><120</td>
<td><120</td>
</tr>
<tr>
<td>Hausgröße Modernisierung</td>
<td>m²</td>
<td><200</td>
<td><240</td>
<td><100</td>
<td><120</td>
<td><120</td>
<td><120</td>
</tr>
</tbody>
</table>
Kurz und bündig

- Für Wohnungen, Einfamilienhäuser und Gewerbeobjekte bis zu maximal 250 m² Fläche
- Zentrales Zu- und Abluftsystem für optimale Luftqualität
- Konstant-Volumenstromlüfter ermöglicht ausbalancierten Luftvolumenstrom und sorgt dadurch für eine effiziente Betriebsweise
- Ergonomisch angeordnete Bedieneinheit zur einfachen Bedienung
- Integriertes Vorheizregister für Volumenstrombalance im Winter
- Bedieneinheit als Fernbedienung zur feuchtesensorgeregelten Lüftung einsetzbar
- Integriertes Bypassmodul zur Temperaturreduzierung in Sommer­nächten
- Kontinuierlicher Abtransport von Schadstoffen aus dem Wohnbereich
- Elektroanschlussfeld bei geschlossenem Gerät erreichbar

EFFIZIENZ: Rückwärtsgekrümmte Konstant-Volumenstromlüfter mit Luftmengenregelung sorgen für ausbalancierte Luftvolumenströme und ermöglichen dadurch die effiziente Betriebsweise.

Arbeitsweise

Weiteres Zubehör

201670 LWF SDA 180/280
236039 FEB
234147 FMS G4-10 180
Technische Daten

<table>
<thead>
<tr>
<th></th>
<th>LWZ 180</th>
<th>LWZ 280</th>
<th>LWZ 180 Enthalpie</th>
<th>LWZ 280 Enthalpie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>232361</td>
<td>232362</td>
<td>236646</td>
<td>236647</td>
</tr>
<tr>
<td>Schallangaben</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schalleistungspegel bei Nennlüftung und 50 Pa extern</td>
<td>dB(A)</td>
<td>43</td>
<td>43</td>
<td>48</td>
</tr>
<tr>
<td>Schalleistungspegel bei max. Volumenstrom und 100 Pa</td>
<td>dB(A)</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Schalleistungspegel (EN 12102)</td>
<td>dB(A)</td>
<td>43</td>
<td>43</td>
<td>48</td>
</tr>
<tr>
<td>Energetische Daten</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energieeffizienzklasse</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Elektrische Daten</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nennspannung</td>
<td>V</td>
<td>230</td>
<td>230</td>
<td>230</td>
</tr>
<tr>
<td>Stromaufnahme max.</td>
<td>A</td>
<td>7,1</td>
<td>7,3</td>
<td>7,1</td>
</tr>
<tr>
<td>Stromaufnahme ohne Vorheizregister</td>
<td>A</td>
<td>0,6</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>Stromaufnahme mit Vorheizregister</td>
<td>A</td>
<td>7,1</td>
<td>7,3</td>
<td>7,1</td>
</tr>
<tr>
<td>Phasen</td>
<td>1/N/PE</td>
<td>1/N/PE</td>
<td>1/N/PE</td>
<td>1/N/PE</td>
</tr>
<tr>
<td>Frequenz</td>
<td>Hz</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Leistungsaufnahme</td>
<td>W</td>
<td>74</td>
<td>134</td>
<td>74</td>
</tr>
<tr>
<td>Leistungsaufnahme ohne Vorheizregister</td>
<td>W</td>
<td>74</td>
<td>134</td>
<td>74</td>
</tr>
<tr>
<td>Leistungsaufnahme mit Vorheizregister</td>
<td>W</td>
<td>1574</td>
<td>1634</td>
<td>1574</td>
</tr>
<tr>
<td>Ausführungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schutzart (IP)</td>
<td>IP21</td>
<td>IP21</td>
<td>IP21</td>
<td>IP21</td>
</tr>
<tr>
<td>Filterklasse</td>
<td>ePM10 > 50 %</td>
<td>ISO</td>
<td>Coarse > 60 %</td>
<td>ePM10 > 50 %</td>
</tr>
<tr>
<td>Dimensionen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
<td>997</td>
<td>997</td>
<td>997</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
<td>690</td>
<td>690</td>
<td>690</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
<td>534</td>
<td>534</td>
<td>534</td>
</tr>
<tr>
<td>Gewichte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gewicht</td>
<td>kg</td>
<td>78</td>
<td>78</td>
<td>80</td>
</tr>
<tr>
<td>Anschlüsse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luftanschlussdurchmesser</td>
<td>mm</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>Kondensatanschluss</td>
<td>mm</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Werte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luftvolumenstrom</td>
<td>m³/h</td>
<td>60-250</td>
<td>60-350</td>
<td>60-250</td>
</tr>
<tr>
<td>Wärmebereitstellungsgrad bis</td>
<td>%</td>
<td>94</td>
<td>94</td>
<td>89</td>
</tr>
<tr>
<td>Einsatzbereich Abluft</td>
<td>°C</td>
<td>15-35</td>
<td>15-35</td>
<td>15-35</td>
</tr>
<tr>
<td>Max. Umgebungstemperatur</td>
<td>°C</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Verfügbare externe Pressung Lüftung</td>
<td>Pa</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
</tbody>
</table>

Funktionen Lüftung

<table>
<thead>
<tr>
<th></th>
<th>LWZ 180</th>
<th>LWZ 280</th>
<th>LWZ 180 Enthalpie</th>
<th>LWZ 280 Enthalpie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>232361</td>
<td>232362</td>
<td>236646</td>
<td>236647</td>
</tr>
<tr>
<td>Funktionen Heizen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funktion Kühlen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funktion Warmwasser</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funktion Solar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einsatzbereich Modernisierung</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Einsatzbereich Neubau</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hausgröße Neubau m²</td>
<td><200</td>
<td><240</td>
<td><200</td>
<td><240</td>
</tr>
<tr>
<td>Hausgröße Modernisierung m²</td>
<td></td>
<td><200</td>
<td><240</td>
<td><200</td>
</tr>
</tbody>
</table>
Lüftung mit zentraler Zu- und Abluft und Wärmerückgewinnung
LWZ 180/280

LWZ 180 balance set 1

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Typ</th>
<th>Beschreibung</th>
<th>Stck.</th>
<th>Best.-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LWZ 180 balance</td>
<td>Zentrales Lüftungsgerät</td>
<td>1</td>
<td>236648</td>
</tr>
<tr>
<td></td>
<td>LVS VTS 9</td>
<td>Schalldämmluftverteiler Aufputz, 9fach, einstellbar</td>
<td>2</td>
<td>234493</td>
</tr>
<tr>
<td></td>
<td>LWF AVF 100</td>
<td>Feuchtegeregeltes Abluftventil</td>
<td>3</td>
<td>236887</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zentrales Lüftungsgerät mit Schalldämmverteilern und feuchte-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>geregelten Abluftventilen</td>
<td></td>
<td>236881</td>
</tr>
</tbody>
</table>

LWZ 180 balance set 2

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Typ</th>
<th>Beschreibung</th>
<th>Stck.</th>
<th>Best.-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LWZ 180 balance</td>
<td>Zentrales Lüftungsgerät</td>
<td>1</td>
<td>236648</td>
</tr>
<tr>
<td></td>
<td>LVS VTS 9</td>
<td>Schalldämmluftverteiler Aufputz, 9fach, einstellbar</td>
<td>2</td>
<td>234493</td>
</tr>
<tr>
<td></td>
<td>LWF AVF 100</td>
<td>Feuchtegeregeltes Abluftventil</td>
<td>5</td>
<td>236887</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zentrales Lüftungsgerät mit Schalldämmverteilern und feuchte-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>geregelten Abluftventilen</td>
<td></td>
<td>236882</td>
</tr>
</tbody>
</table>

LWZ 280 balance set 1

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Typ</th>
<th>Beschreibung</th>
<th>Stck.</th>
<th>Best.-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LWZ 280 balance</td>
<td>Zentrales Lüftungsgerät</td>
<td>1</td>
<td>236649</td>
</tr>
<tr>
<td></td>
<td>LVS VTS 9</td>
<td>Schalldämmluftverteiler Aufputz, 9fach, einstellbar</td>
<td>2</td>
<td>234493</td>
</tr>
<tr>
<td></td>
<td>LWF AVF 100</td>
<td>Feuchtegeregeltes Abluftventil</td>
<td>4</td>
<td>236887</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zentrales Lüftungsgerät mit Schalldämmverteilern und feuchte-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>geregelten Abluftventilen</td>
<td></td>
<td>236883</td>
</tr>
</tbody>
</table>

LWZ 280 balance set 2

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Typ</th>
<th>Beschreibung</th>
<th>Stck.</th>
<th>Best.-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LWZ 280 balance</td>
<td>Zentrales Lüftungsgerät</td>
<td>1</td>
<td>236649</td>
</tr>
<tr>
<td></td>
<td>LVS VTS 9</td>
<td>Schalldämmluftverteiler Aufputz, 9fach, einstellbar</td>
<td>2</td>
<td>234493</td>
</tr>
<tr>
<td></td>
<td>LWF AVF 100</td>
<td>Feuchtegeregeltes Abluftventil</td>
<td>6</td>
<td>236887</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zentrales Lüftungsgerät mit Schalldämmverteilern und feuchte-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>geregelten Abluftventilen</td>
<td></td>
<td>236884</td>
</tr>
</tbody>
</table>
LWZ 180 Balance Set 2 Premium

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Typ</th>
<th>Beschreibung</th>
<th>Stck.</th>
<th>Best.-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWZ 180 balance</td>
<td></td>
<td>Bedarfsgeregelter Zuluftverteiler</td>
<td>1</td>
<td>236648</td>
</tr>
<tr>
<td>ZVTA 8 AS</td>
<td></td>
<td>Anwesenheitssensor</td>
<td>2</td>
<td>239164</td>
</tr>
<tr>
<td>ZVTA 8 CO2</td>
<td></td>
<td>CO2-Sensor</td>
<td>2</td>
<td>239163</td>
</tr>
<tr>
<td>ZVTA 8 FB</td>
<td></td>
<td>Kommunikationsschnittstelle</td>
<td>1</td>
<td>239165</td>
</tr>
<tr>
<td>ZVTA 8 KV</td>
<td></td>
<td>Kompensationsventil</td>
<td>1</td>
<td>239166</td>
</tr>
<tr>
<td>LWF AVF 100</td>
<td></td>
<td>Feuchtegeregeltes Abluftventil</td>
<td>6</td>
<td>236887</td>
</tr>
<tr>
<td>LVS VTS 9</td>
<td></td>
<td>Schalldämmluftverteiler Aufputz, 9fach, einstellbar</td>
<td>1</td>
<td>234493</td>
</tr>
</tbody>
</table>

Zentrales Lüftungsgerät mit bedarfsgeregeltm Zuluft-Schalldämmverteiler, Luftqualitätssensoren, Anwesenheitssensoren, Kompensationsventil, Abluft-Schalldämmverteiler und feuchtegeregelten Abluftventilen

LWZ 280 Balance Set 1 Premium

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Typ</th>
<th>Beschreibung</th>
<th>Stck.</th>
<th>Best.-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWZ 280 balance</td>
<td></td>
<td>Bedarfsgeregelter Zuluftverteiler</td>
<td>1</td>
<td>236649</td>
</tr>
<tr>
<td>ZVTA 8 AS</td>
<td></td>
<td>Anwesenheitssensor</td>
<td>1</td>
<td>239164</td>
</tr>
<tr>
<td>ZVTA 8 CO2</td>
<td></td>
<td>CO2-Sensor</td>
<td>1</td>
<td>239163</td>
</tr>
<tr>
<td>ZVTA 8 FB</td>
<td></td>
<td>Kommunikationsschnittstelle</td>
<td>1</td>
<td>239165</td>
</tr>
<tr>
<td>ZVTA 8 KV</td>
<td></td>
<td>Kompensationsventil</td>
<td>1</td>
<td>239166</td>
</tr>
<tr>
<td>LWF AVF 100</td>
<td></td>
<td>Feuchtegeregeltes Abluftventil</td>
<td>4</td>
<td>236887</td>
</tr>
<tr>
<td>LVS VTS 9</td>
<td></td>
<td>Schalldämmluftverteiler Aufputz, 9fach, einstellbar</td>
<td>1</td>
<td>234493</td>
</tr>
</tbody>
</table>

Zentrales Lüftungsgerät, 1 bedarfsgeregelter/schalldämmter Zuluftverteiler, 1 CO2-Sensor, 2 Anwesenheitssensoren, 1 Kompensationsventil Abluft, 1 Schalldämmluftverteiler und 4 feuchtegeregelten Abluftventilen

LWZ 280 Balance Set 1 Premium

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Typ</th>
<th>Beschreibung</th>
<th>Stck.</th>
<th>Best.-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWZ 280 balance</td>
<td></td>
<td>Bedarfsgeregelter Zuluftverteiler</td>
<td>1</td>
<td>236649</td>
</tr>
<tr>
<td>ZVTA 8 AS</td>
<td></td>
<td>Anwesenheitssensor</td>
<td>1</td>
<td>239164</td>
</tr>
<tr>
<td>ZVTA 8 CO2</td>
<td></td>
<td>CO2-Sensor</td>
<td>1</td>
<td>239163</td>
</tr>
<tr>
<td>ZVTA 8 FB</td>
<td></td>
<td>Kommunikationsschnittstelle</td>
<td>1</td>
<td>239165</td>
</tr>
<tr>
<td>ZVTA 8 KV</td>
<td></td>
<td>Kompensationsventil</td>
<td>1</td>
<td>239166</td>
</tr>
<tr>
<td>LWF AVF 100</td>
<td></td>
<td>Feuchtegeregeltes Abluftventil</td>
<td>4</td>
<td>236887</td>
</tr>
<tr>
<td>LVS VTS 9</td>
<td></td>
<td>Schalldämmluftverteiler Aufputz, 9fach, einstellbar</td>
<td>1</td>
<td>234493</td>
</tr>
</tbody>
</table>

Zentrales Lüftungsgerät, 1 bedarfsgeregelter/schalldämmter Zuluftverteiler, 1 CO2-Sensor, 2 Anwesenheitssensoren, 1 Kompensationsventil Abluft, 1 Schalldämmluftverteiler und 4 feuchtegeregelten Abluftventilen

Lüftung mit zentraler Zu- und Abluft und Wärmerückgewinnung LWZ 180/280
Lüftung mit zentraler Zu- und Abluft und Wärmerückgewinnung
LWZ 180/280

Druckverlustdiagramm

LWZ 180

X Luftvolumenstrom [m³/h]
Y Mittelwert statischer Druck [Pa]
Leistungsaufnahme beider Lüfter [Wh/m³]

LWZ 280

X Luftvolumenstrom [m³/h]
Y Mittelwert statischer Druck [Pa]
Leistungsaufnahme beider Lüfter [Wh/m³]
Maße und Anschlüsse

![Diagram of dimensions and connections](image)

<table>
<thead>
<tr>
<th>b01</th>
<th>Durchführung elektr. Leitungen</th>
<th>LWZ 180</th>
<th>LWZ 280</th>
</tr>
</thead>
<tbody>
<tr>
<td>d45</td>
<td>Kondensatablauf</td>
<td>Durchmesser</td>
<td>mm</td>
</tr>
<tr>
<td>g03</td>
<td>Außenluft</td>
<td>Durchmesser</td>
<td>mm</td>
</tr>
<tr>
<td>g04</td>
<td>Fortluft</td>
<td>Durchmesser</td>
<td>mm</td>
</tr>
<tr>
<td>g05</td>
<td>Abluft</td>
<td>Durchmesser</td>
<td>mm</td>
</tr>
<tr>
<td>g06</td>
<td>Zuluft</td>
<td>Durchmesser</td>
<td>mm</td>
</tr>
<tr>
<td>i13</td>
<td>Wandaufhängung</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mindestabstände

![Diagram of minimum distances](image)
Planungshinweise

Bedingungen am Aufstellort
Der Raum, in dem das Gerät installiert werden soll, muss folgende Bedingungen erfüllen:
- Frostfrei.
- Tragfähige Wand.
- Das Gerät darf nicht in Räumen betrieben werden, die durch Staub, Gase oder Dämpfe explosionsgefährdet sind.

Untergrund und Schallübertragung
Der Untergrund zum Aufstellen oder Aufhängen des Gerätes muss eben, fest, dauerhaft und tragfähig sein. Das Gerät muss gleichmäßig aufstehen beziehungsweise an der Wand anliegen. Ein unebener Untergrund kann das Geräuschverhalten des Gerätes negativ beeinflussen.

Die Gerätebefestigung sowie Rohrbefestigungen und Wanddurchführungen müssen körperschallgedämmt ausgeführt werden.

Elektroanschluss
Das Gerät wird steckerfertig geliefert und muss an eine frei zugängliche Netzanschluss-Steckdose angeschlossen werden. Das Gerät ist mit einer dreistufigen Drehzahlregelung ausgestattet. Der Anschluss an die Fernbedienung oder den Drei-Stufen-Schalter erfolgt über eine mehradrige elektrische Leitung ohne Schutzleiter mit einem Mindest-Querschnitt von 0,5 mm². Die maximale Länge der elektrischen Leitung darf 30 m nicht überschreiten.

Luftanschluss - Fortluft

Luftanschluss - Ab-/Zuluftführung
Die Ab-/Zuluftführung erfolgt zentral. Die Bemessung der Luftvolumenströme muss so erfolgen, dass Zuluft- und Abluftvolumenstrom balanciert sind.

Kondensatablauf
Die in der Abluft gebundene Feuchtigkeit wird durch den Wärmetauscher im Wärmeübertrager auskondensiert. Das Kondensat wird im Gerät gesammelt und zum Kondensatablauf des Gerätes geleitet, von wo aus es bauseitig abgeführt werden muss.

Das Kondensat muss über eine Ablaufleitung mit stetigem, natürlichen Gefälle von mindestens 2 % abgeleitet werden. Die Ablaufleitung muss in einen geeigneten Abfluss oder nach außen geführt werden. Wenn diese Bedingungen nicht eingehalten werden können, muss eine für das Gerät geeignete Kondensatpumpe eingesetzt werden.

Wir empfehlen, den Kondensatablauf einmal jährlich zu reinigen und auf Funktionsfähigkeit zu prüfen.

Anschluss an das Lüftungssystem
Die Lüftungsanschlüsse am Gerät müssen mit flexiblen Rohren ausgeführt werden, um eine geringe Schallübertragung bei einfacher Montage zu gewährleisten.

LWZ 180 / LWZ 280
Isometrie

1 Zuluft
2 Abluft
3 Schalldämpfer
4 Außenluftgitter
5 Außenluft
6 Fortluftgitter
7 Fortluft
8 flexibler Anschluss

Lüftung mit zentraler Zu- und Abluft und Wärmerückgewinnung
LWZ 180/280
Lüftung mit zentraler Zu- und Abluft und Wärmerückgewinnung
LWZ 180/280

Elektrischer Anschluss

LWZ 180 / LWZ 280

1 Fernbedienung FEB
2 Lüftungsgerät
3 Verteilerdose zur Kabelverlängerung
4 Netzanschluss, Haushalts-Tarifzähler
5 Differenzdruckschalter Feuerstätte
6 Druckanschluss „Ofen“
7 Druckanschluss „Raum“
8 Abgas-Temperaturfühler
LWF SDA 180/280

<table>
<thead>
<tr>
<th>LWF SDA 180/280</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beschreibung</td>
</tr>
<tr>
<td>Schalldämmaufsatz mit seitlichen Anschlüssen</td>
</tr>
</tbody>
</table>

FEB

<table>
<thead>
<tr>
<th>FEB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe mm</td>
</tr>
<tr>
<td>Breite mm</td>
</tr>
<tr>
<td>Tiefe mm</td>
</tr>
<tr>
<td>236039</td>
</tr>
<tr>
<td>96</td>
</tr>
<tr>
<td>145</td>
</tr>
<tr>
<td>31</td>
</tr>
</tbody>
</table>

FMS G4-10 180

Ersatzfiltermatten für die Abluft in den zentralen Lüftungsgeräten 180/280 aus bruchsicheren Polyesterfasern mit teilweise progressivem Aufbau, thermisch gebunden, temperaturbeständig bis 100 Grad C.

<table>
<thead>
<tr>
<th>FMS G4-10 180</th>
<th>FMK F5-2 180</th>
<th>FMK F7-2 180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anwendung</td>
<td>Lüftungsgeräte</td>
<td></td>
</tr>
<tr>
<td>Filterklasse</td>
<td>G4</td>
<td>F7</td>
</tr>
<tr>
<td>Filterklasse</td>
<td>ISO Coarse > 60 % (G4)</td>
<td></td>
</tr>
<tr>
<td>234147</td>
<td>234148</td>
<td>234208</td>
</tr>
</tbody>
</table>

LWTF 180/280

<table>
<thead>
<tr>
<th>LWTF 180/280</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beschreibung</td>
</tr>
<tr>
<td>Austausch-Enthalpie-Wärmeübertrager</td>
</tr>
<tr>
<td>236420</td>
</tr>
</tbody>
</table>
Installation

☐ Der frostfreie Aufstellungsort ist festgelegt.

☐ Fläche, Volumen und Raumhöhe des Aufstellungsräumes entsprechen den technischen Vorgaben des Gerätes inklusive montierter Luftleitungen und sonstigem Zubehör.

☐ Die Installationswand ist für das Gerätegewicht geeignet.

☐ Eine Körperschall-Übertragung auf das Gebäude ist weitestgehend ausgeschlossen.

☐ Das Kondenswasser wird mit natürlichem Gefälle in den bestehenden Abfluss in der Nähe des Gerätes eingeleitet.

☐ Das Kondenswasser wird mit einer zusätzlichen Kondensatpumpe abgeleitet. Die Kondensatpumpe ist für die Leitungs- länge und Förderhöhe geeignet.

☐ Die Position der Fernbedienung und die elektrische Verbindung zum Gerät sind definiert.

Lüftung - allgemein

☐ Der Luftvolumenstrom ist für jeden Raum festgelegt.

☐ Das zu belüftende Gesamt-Raumvolumen entspricht den Mindest- und Maximalvorgaben des Gerätes.

☐ Die Luftmenge pro Ventil wurde definiert.

☐ Der Gesamt-Luftwechsel des Gebäudes liegt zwischen 0,4 und 0,6-fach.

☐ Die Strömungsgeschwindigkeit im Lüftungssystem ist < 3 m/s

Luftleitungstrasse

☐ Die Luftleitungstrasse und die Luftleitungsduurchmesser sind definiert. Auf eine möglichst einfach zu realisierende bauseitige Verlegung wurde geachtet.

☐ Der Fortluftanschluss durch die Gebäudehülle ist einfach zu realisieren.

☐ Bei der Positionierung der Zu- und Abluftventile wurde auf die optimale Raumdurchströmung bei einer geringen Strömungsgeschwindigkeit geachtet.

☐ Das Küchen-Abluftventil ist nicht in unmittelbarer Nähe der Kochstelle positioniert.

☐ Die Dunstabzugshaube ist mit einer selbsttätigen Rückschlagklappe ausgestattet oder ist eine Umluft-Dunstabzugshaube. Es erfolgt kein Eintrag von Außenluft durch die Dunstabzugshaube.

☐ Reinigungs- und Wartungsoffnungen für alle Luftleitungen sind definiert.

☐ Die Position von Telefonie-Schalldämpfern für Wohn- und Schlafzimmer sind im Gebäudeplan definiert

☐ Die Überströmöffnungen sind für den geplanten Luftvolumenstrom ausreichend groß und im Gebäudeplan definiert.

Kachel- und Kaminöfen

☐ Kachel- oder Kaminofen wird raumluftunabhängig betrieben.

☐ Kabel wurde vom Kachel- oder Kaminofen zum Lüftungsgerät verlegt, um bei Bedarf eine geeignete Sicherheitseinrichtung anuschließen.

☐ Der raumluftabhängige Kachel- oder Kaminofen ist mit einer Sicherheitseinrichtung ausgestattet, mit separater Verbrennungsraumluftversorgung versehen und mit der Lüftungsanlage elektrisch verbunden.

☐ Freigabe vom Schornsteinfeger liegt vor.
Notizen
Lüftung mit zentraler Zu- und Abluft und Wärmerückgewinnung

Kurz und bündig
- Zentrales Zu- und Abluftsystem für optimale Luftqualität
- Kontinuierlicher Abtransport von Schadstoffen aus dem Wohnbereich
- Einfache Einstellung durch Konstant-Volumenstromlüfter
- Hohe Wärmerückgewinnung durch Kreuzgegenstrom-Wärmeübertrager
- Einfache Programmierung durch integrierte Bedieneinheit

Kompaktgeräte zum Be- und Entlüften von Wohnungen und Einfamilienhäusern; Wärmerückgewinnung aus der Abluft über Kreuzgegenstrom-Wärmeübertrager; einfach austauschbare Filter zur Filterung der Außenluft und Abluft; Luftanschlüsse auf der Oberseite des Gerätes; Luftvolumenstrom in drei Stufen wählbar. Bodenaufstellung oder Wandmontage; Gehäuse aus verzinktem, kunststoffpulverbeschichtetem Stahlblech.

Arbeitsweise

Weiteres Zubehör
189800 FEQ
185358 FEZ
234866 ZLWZ 4 S
222446 FMS G3-10 70
227660 FMK F7-2 70
227046 LSK 70 E
236038 ZLWZ VHR 70 E
235912 LVE ÜB-U
233029 LVE WAV
Technische Daten

<table>
<thead>
<tr>
<th>LWZ 70 E 233851</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schallangaben</td>
</tr>
<tr>
<td>Schallleistungspegel L_{wa}</td>
</tr>
<tr>
<td>Energetische Daten</td>
</tr>
<tr>
<td>Energieeffizienzklasse bei durchschnittlichen Klimaverhältnissen für Handsteuerung</td>
</tr>
<tr>
<td>Elektrische Daten</td>
</tr>
<tr>
<td>Nennspannung</td>
</tr>
<tr>
<td>Stromaufnahme max.</td>
</tr>
<tr>
<td>Stromaufnahme ohne Vorheizregister</td>
</tr>
<tr>
<td>Phasen</td>
</tr>
<tr>
<td>Frequenz</td>
</tr>
<tr>
<td>Leistungsaufnahme</td>
</tr>
<tr>
<td>Leistungsaufnahme ohne Vorheizregister</td>
</tr>
<tr>
<td>Ausführungen</td>
</tr>
<tr>
<td>Schutzart (IP)</td>
</tr>
<tr>
<td>Filterklasse</td>
</tr>
<tr>
<td>Dimensionen</td>
</tr>
<tr>
<td>Höhe</td>
</tr>
<tr>
<td>Breite</td>
</tr>
<tr>
<td>Tiefe</td>
</tr>
<tr>
<td>Gewichte</td>
</tr>
<tr>
<td>Gewicht</td>
</tr>
<tr>
<td>Anschlüsse</td>
</tr>
<tr>
<td>Luftanschlussdurchmesser</td>
</tr>
<tr>
<td>Kondensatanschluss</td>
</tr>
<tr>
<td>Werte</td>
</tr>
<tr>
<td>Luftvolumenstrom</td>
</tr>
<tr>
<td>Wärmebereitstellungsgrad bis</td>
</tr>
<tr>
<td>Einsatzbereich Abluft</td>
</tr>
<tr>
<td>Max. Umgebungstemperatur</td>
</tr>
<tr>
<td>Verfügbare externe Pressung Lüftung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LWZ 70 E 233851</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funktionen Lüftung</td>
</tr>
<tr>
<td>Funktion Heizen</td>
</tr>
<tr>
<td>Funktion Kühlen</td>
</tr>
<tr>
<td>Funktion Warmwasser</td>
</tr>
<tr>
<td>Funktion Solar</td>
</tr>
<tr>
<td>Einsatzbereich Modernisierung</td>
</tr>
<tr>
<td>Einsatzbereich Neubau</td>
</tr>
<tr>
<td>Hausgröße Neubau</td>
</tr>
<tr>
<td>Hausgröße Modernisierung</td>
</tr>
</tbody>
</table>
Lüftung mit zentraler Zu- und Abluft und Wärmerückgewinnung
LWZ 70 E

Druckverlustdiagramm

X Luftvolumenstrom [m³/h]
Y Mittelwert statischer Druck [Pa]
\(\times\) Leistungsaufnahme beider Lüfter [Wh/m³]
Lüftung mit zentraler Zu- und Abluft und Wärmerückgewinnung
LWZ 70 E

Maße und Anschlüsse

<table>
<thead>
<tr>
<th>LWZ 70 E</th>
</tr>
</thead>
<tbody>
<tr>
<td>b01 Durchführung elektr. Leitungen</td>
</tr>
<tr>
<td>d04 Kondensatablauf Durchmesser mm 13</td>
</tr>
<tr>
<td>g03 Außenluft Nennweite DN 125</td>
</tr>
<tr>
<td>g04 Fortluft Nennweite DN 125</td>
</tr>
<tr>
<td>g05 Abluft Nennweite DN 125</td>
</tr>
<tr>
<td>g06 Zuluft Nennweite DN 125</td>
</tr>
</tbody>
</table>

Mindestabstände

≥300

b01 Durchführung elektr. Leitungen

d04 Kondensatablauf

g03 Außenluft

g04 Fortluft

g05 Abluft

g06 Zuluft
Planungshinweise

Bedingungen am Aufstellort

Der Raum, in dem das Gerät installiert werden soll, muss folgende Bedingungen erfüllen:

- Frostfrei.
- Tragfähige Wand.
- Das Gerät darf nicht in Räumen betrieben werden, die durch Staub, Gase oder Dämpfe explosionsgefährdet sind.

Untergrund und Schallübertragung

Der Untergrund zum Aufstellen oder Aufhängen des Gerätes muss eben, fest, dauerhaft und tragfähig sein. Das Gerät muss gleichmäßig aufstehen beziehungsweise an der Wand anliegen. Ein unebener Untergrund kann das Geräuschverhalten des Gerätes negativ beeinflussen.

Die Gerätebefestigung sowie Rohrverbundungen und Wandverkleidungen müssen körperschalldämmend ausgeführt werden.

Elektroanschluss

Das Gerät wird steckerfertig geliefert und muss an eine frei zugängliche Netzanschluss-Steckdose angeschlossen werden. Das Gerät ist mit einer dreistufigen Drehzahlregelung ausgestattet. Der Anschluss an die Fernbedienung oder den Drei-Stufen-Schalter erfolgt über eine mehradrige elektrische Leitung ohne Schutzleitung, mit einem Mindest-Querschnitt von 0,5 mm². Die maximale Länge der elektrischen Leitung darf 30 m nicht überschreiten.

Luftanschluss - Fortluft

Luftanschluss - Ab-/Zuluftführung

Die Ab-/Zuluftführung erfolgt zentral. Die Bemessung der Luftvolumenströme muss so erfolgen, dass Zuluft- und Abluftvolumenstrom balanciert sind.

Kondensatablauf

Die in der Abluft gebundene Feuchtigkeit wird durch den Wärmeentzug im Wärmetauscher auskondensiert. Das Kondensat wird im Gerät gesammelt und zum Kondensatablauf des Gerätes geleitet, von wo aus es bauzeitig abgeführt werden muss.

Das Kondensat muss über eine Ablaufleitung mit stetigem, natürlichen Gefälle von mindestens 2 % abgeleitet werden. Die Ablaufleitung muss in einem geeigneten Abfluss oder nach außen geführt werden. Wenn diese Bedingungen nicht eingehalten werden können, muss eine für das Gerät geeignete Kondensatsammlerleitungen eingesetzt werden.

Wir empfehlen, den Kondensatablauf einmal jährlich zu reinigen und auf Funktionsfähigkeit zu prüfen.

Anschluss an das Lüftungssystem

Die Lüftungsanschlüsse am Gerät müssen mit flexiblen Rohren ausgeführt werden, um eine geringe Schallübertragung bei einfacher Montage zu gewährleisten.

LWZ 70 E
Lüftung mit zentraler Zu- und Abluft und Wärmerückgewinnung

LWZ 70 E

Isometrie

1 Zuluft
2 Abluft
3 Schalldämpfer
4 Außenluft
5 Außenluftgitter
6 Fortluft
7 Fortluftgitter
8 flexibler Anschluss
Lüftung mit zentraler Zu- und Abluft und Wärmerückgewinnung
LWZ 70 E

Elektrischer Anschluss

LWZ 70 E

![Elektrischer Anschluss Diagramm]

1. Fernbedienung 3-Stufen-Schalter
2. Fernbedienung 4-Stufen-Schalter
3. Fernbedienung Luftqualitätsensor FEQ
4. Fernbedienung FEZ
5. Lüftungsgerät
6. Netzanschluss, Haushaltstarifzähler
7. Differenzdruckschalter Feuerstätte
8. Druckanschluss „Ofen“
9. Druckanschluss „Raum“
10. Abgas-Temperaturfühler
FEQ

<table>
<thead>
<tr>
<th>FEQ</th>
<th>189800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
<tr>
<td>DC-Spannung min.</td>
<td>V</td>
</tr>
<tr>
<td>DC-Spannung max.</td>
<td>V</td>
</tr>
<tr>
<td>Nennstrom</td>
<td>mA</td>
</tr>
<tr>
<td>Gehäuse</td>
<td>Kunststoffgehäuse</td>
</tr>
<tr>
<td>Farbe</td>
<td>weiß</td>
</tr>
<tr>
<td>Schutzart (IP)</td>
<td>IP20</td>
</tr>
</tbody>
</table>

FEZ

<table>
<thead>
<tr>
<th>FEZ</th>
<th>185358</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
<tr>
<td>DC-Spannung min.</td>
<td>V</td>
</tr>
<tr>
<td>DC-Spannung max.</td>
<td>V</td>
</tr>
<tr>
<td>Nennstrom</td>
<td>mA</td>
</tr>
<tr>
<td>Gehäuse</td>
<td>Kunststoffgehäuse mit Stecksockel</td>
</tr>
<tr>
<td>Farbe</td>
<td>weiß</td>
</tr>
<tr>
<td>Schutzart (IP)</td>
<td>IP20</td>
</tr>
</tbody>
</table>

ZLWZ 4 S

Vier-Stufen-Schalter mit LED zum Einstellen der Lüfterstufen vom Wohnraum aus, für die zentralen Lüftungsgeräte 70 E, 170 E Plus und 370 Plus incl. Anschlusskabel ca. 1,5 m lang. Die Montage erfolgt auf eine Unterputzschalterdose.

| ZLWZ 4 S | 234866 |

FMS G3-10 70

Hochleistungfilter-Medium aus bruchsicheren Polyesterfasern mit teilweise progressivem Aufbau, thermisch gebunden, temperaturbeständig bis 100 °C.

<table>
<thead>
<tr>
<th>FMS G3-10 70</th>
<th>222466</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anwendung</td>
<td>Lüftungsgeräte</td>
</tr>
<tr>
<td>Filterklasse</td>
<td>G3</td>
</tr>
<tr>
<td>Filterklasse</td>
<td>ISO Coarse > 45 % (G3)</td>
</tr>
<tr>
<td>Anzahl</td>
<td>10</td>
</tr>
</tbody>
</table>
LWZ 70 Zubehör

FMK F7-2 70

Ersatzfilterkassetten für die Zuluft aus bruchsicheren Polyesterfasern mit teilweise progressivem Aufbau, thermisch gebunden, temperaturbeständig bis 100 Grad C, Z-gefaltet im stabilen Rahmen aus feuchtigkeitsbeständigem Karton mit Zuglasche an der Frontseite.

<table>
<thead>
<tr>
<th>Filterklasse</th>
<th>FMK F7-2 70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Höhe</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>284</td>
<td></td>
</tr>
</tbody>
</table>

LSK 70 E

Einschubmodul als Alternative zum Kreuz-Gegenstrom-Wärmeübertrager, um die Wärmeübertragung im Sommer zu vermeiden.

<table>
<thead>
<tr>
<th>Höhe</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gewicht</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2</td>
<td></td>
</tr>
</tbody>
</table>

ZLWZ VHR 70-270

Elektrisches Vorheizregister für die Außenluftvorwärmung bei den zentralen Lüftungsgeräten zur Frostfreihaltung des Kreuzgegenstromwärmeübertragers.

<table>
<thead>
<tr>
<th>Gewicht</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heizleistung</th>
<th>kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anschlussdurchmesser</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td></td>
</tr>
</tbody>
</table>
Produktgruppenzubehör
LWZ 70 Zubehör
Lüftung mit zentraler Zu- und Abluft und Wärmerückgewinnung LWZ 100 plus LI/RE

Arbeitsweise

Weiteres Zubehör
223228 ZLWZ 100 G-DN100
231336 ZLWZ 100D-DN 100
223230 Verlängerung Kombikanal EPS
231446 FMS G4-10 LWZ 100 Bypass
231447 FMS G4-10 LWZ 100 ABL
231448 FMK M5-2 LWZ 100 ZUL
231449 FMK F7-2 LWZ 100 ZUL
233016 LWF FBF 160
Technische Daten

<table>
<thead>
<tr>
<th>LWZ 100 plus RE</th>
<th>LWZ 100 plus LI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>279</td>
</tr>
<tr>
<td>Breite</td>
<td>1274</td>
</tr>
<tr>
<td>Tiefe</td>
<td>768</td>
</tr>
<tr>
<td>Gewicht</td>
<td>36</td>
</tr>
<tr>
<td>Nennspannung</td>
<td>230</td>
</tr>
<tr>
<td>Phasen</td>
<td>1/N/PE</td>
</tr>
<tr>
<td>Frequenz</td>
<td>50</td>
</tr>
<tr>
<td>Stromaufnahme max.</td>
<td>4,7</td>
</tr>
<tr>
<td>Leistungsaufnahme max.</td>
<td>62</td>
</tr>
<tr>
<td>Leistungsaufnahme Lüftung Stufe 1/2/3</td>
<td>17-36 / 27-56 / 39-75</td>
</tr>
<tr>
<td>Leistungsaufnahme</td>
<td>17-75</td>
</tr>
<tr>
<td>Filterklasse</td>
<td>ePM10 ≥ 50 % (M5)</td>
</tr>
<tr>
<td>Schutzart (IP)</td>
<td>IP24</td>
</tr>
<tr>
<td>Luftanschluss Flachkanal</td>
<td>50x150 / 50x200 (optional)</td>
</tr>
<tr>
<td>Wärmebereitstellungsgrad bis</td>
<td>90</td>
</tr>
<tr>
<td>Verfügbare externe Pressung Lüftung</td>
<td>75</td>
</tr>
<tr>
<td>Max. Umgebungstemperatur</td>
<td>38</td>
</tr>
<tr>
<td>Luft-Volumenstrom Stufe 1/2/3</td>
<td>35-75 / 55-115 / 80-155</td>
</tr>
<tr>
<td>Luftvolumenstrom</td>
<td>35-155</td>
</tr>
<tr>
<td>Max. Wirkungsgrad Kreuz-Gegenstrom-Wärmeübertrager</td>
<td>90</td>
</tr>
<tr>
<td>Einsatzbereich Abluft</td>
<td>15...30</td>
</tr>
<tr>
<td>Wärmebereitstellungsgrad (PHI)</td>
<td>87</td>
</tr>
<tr>
<td>Wärmebereitstellungsgrad</td>
<td>90</td>
</tr>
<tr>
<td>Energieeffizienzklasse</td>
<td>A</td>
</tr>
<tr>
<td>Funktionen Lüftung</td>
<td>Nur Lüften</td>
</tr>
<tr>
<td>Funktion Heizen</td>
<td>-</td>
</tr>
<tr>
<td>Funktion Kühlen</td>
<td>-</td>
</tr>
<tr>
<td>Funktion Warmwasser</td>
<td>-</td>
</tr>
<tr>
<td>Funktion Solar</td>
<td>-</td>
</tr>
<tr>
<td>Einsatzbereich Modernisierung</td>
<td>x</td>
</tr>
<tr>
<td>Einsatzbereich Neubau</td>
<td>x</td>
</tr>
<tr>
<td>Hausgröße Neubau</td>
<td><120</td>
</tr>
<tr>
<td>Hausgröße Modernisierung</td>
<td><120</td>
</tr>
</tbody>
</table>

Lüftung mit zentraler Zu- und Abluft und Wärmerückgewinnung LWZ 100 plus LI/RE
Lüftung mit zentraler Zu- und Abluft und Wärmerückgewinnung
LWZ 100 plus LI/RE

Druckverlustdiagramm

X Volumenstrom [m³/h]
Y statischer Druck [Pa]
1 Lüfterkennlinie
2 Mindestdruckreserve für das angeschlossene Kanalnetz
A Lüfterstufe 1
B Lüfterstufe 2
C Lüfterstufe 3
Maße und Anschlüsse

LWZ 100 plus RE

Mindestabstände LWZ 100 plus RE

<table>
<thead>
<tr>
<th>b01</th>
<th>Durchführung elektr. Leitungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>d45</td>
<td>Kondensatablauf</td>
</tr>
<tr>
<td>g03</td>
<td>Außenluft</td>
</tr>
<tr>
<td>g04</td>
<td>Fortluft</td>
</tr>
<tr>
<td>g05</td>
<td>Abluft</td>
</tr>
<tr>
<td>g06</td>
<td>Zuluft</td>
</tr>
</tbody>
</table>
Lüftung mit zentraler Zu- und Abluft und Wärmerückgewinnung
LWZ 100 plus LI/RE

LWZ 100 plus LI

Mindestabstände LWZ 100 plus LI
Planungshinweise

Bedingungen am Aufstellort
Der Raum, in dem das Gerät installiert werden soll, muss folgende Bedingungen erfüllen:
- Der Raum muss frostfrei sein.
- Die Decke muss tragfähig sein.
- Montageort in unmittelbarer Nähe einer Außenwand.
- Das Gerät darf nicht in Räumen betrieben werden, die durch Staub, Gase oder Dämpfe explosionsgefährdet sind.

Untergrund und Schallübertragung
Der Untergrund zum Aufhängen des Gerätes muss eben, fest, dauerhaft und tragfähig sein. Das Gerät muss waagerecht montiert werden. Rohrbefestigungen und Wanddurchführungen sind Körperschall gedämmt auszuführen.

Platzbedarf
Bei der Platzierung des Gerätes muss genügend Freiraum für den Anschluss der Zuluft- und Abluftrohre vorgesehen werden.
Um die Frontblende ungehindert öffnen zu können, muss der Schwenkbereich unterhalb der Klappe frei bleiben.

Elektroanschluss
Beachten Sie die VDE 0100 und die Vorschriften des örtlichen Energieversorgers.
Der Netzspannungsanschluss erfolgt an der Klemmleiste im Gerät.
Der Anschluss an das Stromnetz ist nur als fester Anschluss möglich. Das Gerät muss über eine Trennstrecke von mindestens 3 mm allpolig vom Netzanschluss getrennt werden können. Diese Anforderung wird von Schützen, LS-Schaltern, Sicherungen usw. übernommen.
Das Gerät ist mit einer dreistufigen Drehzahlregelung ausgestattet.
Der Anschluss an die Fernbedienung erfolgt über eine dreidrige Leitung ohne Schutzleiter mit einem Mindest-Querschnitt von 0,5 mm². Die maximale Leitungslänge darf 30 m nicht überschreiten.

Lufanschlüsse
Die Fortluft-Austrittsöffnung durch die Außenwand sollte nicht auf benachbarte Fenster von Wohn- und Schlafräumen gerichtet werden.
Die Außen-/Fortluftführung erfolgt zentral. Ein auf das Gerät abgestimmtes Wetterschutzgitter gehört zum Lieferumfang.

Kondensatablauf
Durch die Wärmerückgewinnung entsteht im Gerät Kondenswasser. Um das Kondenswasser abzuleiten, verfügt das Gerät über eine eingebaute Kondensatpumpe. Leiten Sie das Kondensat weiter in eine frostschicke Abflussleitung mit natürlichen Gefälle. Das Kondensat muss frei aus der Leitung ablaufen können.

Anschluss an das Lüftungssystem

<table>
<thead>
<tr>
<th>Anschluss</th>
<th>LWZ 100 plus RE / LWZ 100 plus LI</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LFK-Kanal</td>
<td>1 x Zuluft</td>
<td>2 x Zuluft</td>
</tr>
<tr>
<td>LFK-Kanal</td>
<td>1 x Abluft</td>
<td>2 x Abluft</td>
</tr>
</tbody>
</table>

Abgleich der Luft-Volumenströme
Um den eingestellten Luftvolumenstrom unabhängig vom Luftwiderstand konstant zu halten, passt die integrierte Elektronik dauernd die Drehzahl beider Lüfter an, daher sind die Drehzahlen der beiden Lüfter nicht immer konstant.
Das Gerät wird mit den voreingestellten Luft-Volumenströmen ausgeliefert:

<table>
<thead>
<tr>
<th>Ventilatorstufe</th>
<th>Zuluft- und Abluftmenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stufe 1</td>
<td>m³/h ca. 55</td>
</tr>
<tr>
<td>Stufe 2</td>
<td>m³/h ca. 85</td>
</tr>
<tr>
<td>Stufe 3</td>
<td>m³/h ca. 120</td>
</tr>
</tbody>
</table>

Die Zuluft- und Abluftvolumenströme können über die integrierte Daten-Schnittstelle mithilfe einer Servicesoftware eingestellt werden. Das dafür benötigte Schnittstellenkabel sowie die Service-Softwarepaket LWZ/TVZ 100 sind als Zubehör erhältlich. Um einen möglichst niedrigen Stromverbrauch der Lüfter zu erzielen, sollte das Lüftungsnetz kurz sein und entsprechend der Anlagenplanung ausgeführt werden. Das Lüftungsnetz muss abgedichtet werden.

Isometrie

1 Zuluft
2 Abluft
3 kombinierter Außenluft-/Fortluftkanal
4 Außen- und Fortluftgitter

Abb. 1: LWZ 100 plus LI/RE
Lüftung mit zentraler Zu- und Abluft und Wärmerückgewinnung

LWZ 100 plus LI/RE

1. Bypassklappe (Sommerbypass)
2. Filter
3. Temperatur- und Feuchtefühler
4. Kreuzgegenstrom-Wärmeübertrager
5. Temperaturfühler
6. Sicherheitstemperaturbegrenzer
7. elektrische Vorheizung
8. Außenluft
9. Fortluft
10. Schaltkasten
11. Kondensatpumpe
12. Lüfter
13. Kondensatwanne
14. Füllstandfühler
15. Zuluft
16. Abluft
Produktgruppenzubehör

LWZ 100 plus LI/RE Zubehör

ZLWZ 100 G-DN100

Übergangstück aus EPS für die Außen- und Fortluftführung beim zentralen Lüftungsgerät 100 für den Übergang vom Gerät auf zweimal DN 100 Rundrohr.

<table>
<thead>
<tr>
<th>ZLWZ 100 G-DN100</th>
<th>223228</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beschreibung</td>
<td>Übergangsstück LWZ 100 auf 2x DN 100</td>
</tr>
</tbody>
</table>

ZLWZ 1000-DN 100

Übergangstück mit Kombikanal aus EPS für die Außen- und Fortluftführung beim zentralen Lüftungsgerät 100 für den Übergang vom Außengitter auf zweimal DN 100 Rundrohr.

<table>
<thead>
<tr>
<th>ZLWZ 1000-DN 100</th>
<th>231336</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm 225</td>
</tr>
<tr>
<td>Beschreibung</td>
<td>Kombikanal mit Übergangstück auf 2x DN 100</td>
</tr>
</tbody>
</table>

Verlängerung Kombikanal EPS

Verlängerung Kombikanal für die zentralen Lüftungsgeräte 100 aus EPS zur Außen- und Fortluftführung.

<table>
<thead>
<tr>
<th>Verlängerung Kombikanal EPS</th>
<th>223230</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beschreibung</td>
<td>Kombikanal EPS, DN 225, 645 mm lang</td>
</tr>
</tbody>
</table>
FMS G4-10 LWZ 100 Bypass

HochleistungsfILTER-Medium aus bruchsicheren Polyesterfasern mit teilweise progressivem Aufbau, thermisch gebunden, temperaturbeständig bis 100 °C.

<table>
<thead>
<tr>
<th>FMS G4-10 LWZ 100 Bypass</th>
<th>231446</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filterklasse</td>
<td>G4</td>
</tr>
<tr>
<td>Filterklasse</td>
<td>ISO Coarse > 60 % (G4)</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FMS G4-10 LWZ 100 ABL</th>
<th>231447</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filterklasse</td>
<td>G6</td>
</tr>
<tr>
<td>Filterklasse</td>
<td>ISO Coarse > 60 % (G4)</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FMK M5-2 LWZ 100 ZUL</th>
<th>231448</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filterklasse</td>
<td>F5</td>
</tr>
<tr>
<td>Anfangsdruckverlust</td>
<td>Pa</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FMK F7-2 LWZ 100 ZUL</th>
<th>231449</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filterklasse</td>
<td>F7</td>
</tr>
<tr>
<td>Anfangsdruckverlust</td>
<td>Pa</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
</tbody>
</table>
Notizen
Kurz und bündig

- Zentrales Zu- und Abluftsystem für optimale Luftqualität
- Integriertes elektrisches Luft-Vorheizregister
- Platzsparende Deckenmontage

Auszeichnungen

LWZ 130

ANWENDUNG: Zentrales Lüftungsgerät mit Wärmerückgewinnung zur Be- und Entlüftung von Wohnungen und kleinen Einfamilienhäusern.

EFFIZIENZ: Konstant-Volumenstromlüfter ermöglicht ausbalancierten Luftvolumenstrom und optimiert dadurch die effiziente Betriebsweise.

INSTALLATION: Montage als Deckengerät in Wohneinheiten, die Luftanschlüsse sind an der rechten und linken Seite des Gerätes, einfaches Erreichen des Elektroanschlussfeldes ohne Öffnen des Gerätes, EPS-Gehäuse mit partieller Blechverkleidung aus verzinktem Stahlblech. Der raumseitige Abschluss erfolgt durch eine bauseitig zu installierende Serviceklappe.

LWZ 130 Enthalpie

ANWENDUNG: Zentrales Lüftungsgerät mit Wärmerückgewinnung zur Be- und Entlüftung von Wohnungen und kleinen Einfamilienhäusern.

EFFIZIENZ: Konstant-Volumenstrom-Lüfter ermöglicht ausbalancierten Luftvolumenstrom und optimiert dadurch die effiziente Betriebsweise.

INSTALLATION: Aufstellung als Deckengerät in Wohneinheiten die Luftanschlüsse sind an der rechten und linken Seite des Gerätes, einfaches Erreichen des Elektroanschlussfeldes ohne Öffnen des Gerätes, EPS-Gehäuse mit partieller Blechverkleidung aus verzinktem Stahlblech. Der raumseitige Abschluss erfolgt durch eine bauseitig zu installierende Serviceklappe.

Weiteres Zubehör

- 238923 FMS G4-10 130/135
- 238924 FMK M5-2 130/135
- 238925 FMK F7-2 130/135
- 236910 LWF DR 160-1
- 236911 LWF DRB 160-90
- 236912 LWF DRB 160-45
- 236913 LWF DRF 160-0,5
- 236914 LWF DRKB
Lüftung mit zentraler Zu- und Abluft und Wärmerückgewinnung

LWZ 130 / Enthalpie

Technische Daten

<table>
<thead>
<tr>
<th>LWZ 130</th>
<th>LWZ 130 Enthalpie</th>
</tr>
</thead>
<tbody>
<tr>
<td>237805</td>
<td>237806</td>
</tr>
</tbody>
</table>

Schallangaben
- Schallleistungspegel bei Nennlüftung und 50 Pa extern: 23 dB(A)
- Schallleistungspegel (EN 12102): 23 dB(A)

Einsatzgrenzen
- Einsatzbereich Außenluft (Temperatur): -15°C - 40°C
- Einsatzbereich Abluft (Temperatur): 15°C - 35°C

Energetische Daten
- Energieeffizienzklasse: A

Elektrische Daten
- Nennspannung: 230 V
- Phasen: 1/1/PE
- Frequenz: 50 Hz
- Leistungsaufnahme mit Vorheizregister: 1150 W
- Leistungsaufnahme ohne Vorheizregister: 105 W
- Max. Netzimpedanz Zmax: 0,32 Ohm

Filterklassen
- Filterklasse: ePM10 ≥ 50 % (M5) | ISO Coarse > 60 % (G4)

Schutzart (IP)
- Schutzart (IP): IP20

Dimensionen
- Höhe: 248 mm
- Breite: 520 mm
- Tiefe: 1113 mm

Gewichte
- Gewicht: 18 kg

Anschlüsse
- Luftanschlussdurchmesser: 125 mm
- Kondensatanschluss: 16,5 mm

Werte
- Wärmebereitstellungsgrad bis: 87 %
- Luftvolumenstrom: 50-180 m³/h
- Umgebungsbedingungen min. Aufstellraum (Temperatur): 2°C
- Umgebungsbedingungen max. Aufstellraum (Temperatur): 35°C
- Lager- und Transporttemperatur: 50°C
- Verfügbare externe Pressung bei Luftvolumenstrom max.: 160 Pa
- Wärmebereitstellungsgrad: 87 %

Funktionen Lüftung

<table>
<thead>
<tr>
<th>LWZ 130</th>
<th>LWZ 130 Enthalpie</th>
</tr>
</thead>
<tbody>
<tr>
<td>237805</td>
<td>237806</td>
</tr>
</tbody>
</table>

- Nur Lüften

Hausgröße Neubau
- m²: <120

Hausgröße Modernisierung
- m²: <120
Lüftung mit zentraler Zu- und Abluft und Wärmerückgewinnung
LWZ 130 / Enthalpie

Lüfterdiagramm

Einsatzbereich
X Luftvolumenstrom [m³/h]
Y Mittelwert statischer Druck [Pa]

Mindestabstände

Für den Filterwechsel und die Wartung muss das Gerät von unten zugänglich sein. Montieren Sie unterhalb des Gerätes eine Klappe (600 x 1200 mm) oder gestalten Sie die Zwischendecke so, dass die Zwischendecke unterhalb des Gerätes herausnehmbar ist.
Lüftung mit zentraler Zu- und Abluft und Wärmerückgewinnung
LWZ 130 / Enthalpie

LWZ 130

<table>
<thead>
<tr>
<th>Durchmesser (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>b07 Elektrischer Anschluss</td>
</tr>
<tr>
<td>d04 Kondensatablauf</td>
</tr>
<tr>
<td>g03 Außenluft</td>
</tr>
<tr>
<td>g04 Fortluft</td>
</tr>
<tr>
<td>g05 Abluft</td>
</tr>
<tr>
<td>g06 Zuluft</td>
</tr>
</tbody>
</table>

LWZ 130 Enthalpie

<table>
<thead>
<tr>
<th>Durchmesser (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>b07 Elektrischer Anschluss</td>
</tr>
<tr>
<td>d04 Kondensatablauf</td>
</tr>
<tr>
<td>g03 Außenluft</td>
</tr>
<tr>
<td>g04 Fortluft</td>
</tr>
<tr>
<td>g05 Abluft</td>
</tr>
<tr>
<td>g06 Zuluft</td>
</tr>
</tbody>
</table>
Planungshinweise

Bedingungen am Aufstellort
Der Raum, in dem das Gerät installiert werden soll, muss folgende Bedingungen erfüllen:
- Der Raum muss frostfrei sein.
- Die Decke muss tragfähig sein.
- Montageort in unmittelbarer Nähe einer Außenwand.
- Das Gerät darf nicht in Räumen betrieben werden, die durch Staub, Gase oder Dämpfe explosionsgefährdet sind.

Untergrund und Schalldämpfung
Der Untergrund zum Aufhängen des Gerätes muss eben, fest, dauerhaft und tragfähig sein. Das Gerät muss waagerecht montiert werden. Rohrbefestigungen und Wanddurchführungen sind Körperschall gedämmt auszuführen.

Platzbedarf
Bei der Platzierung des Gerätes muss genügend Freiraum für den Anschluss der Zuluft- und Abluftkanäle vorgesehen werden.
Um die Frontblende ungehindert öffnen zu können, muss der Schwenkbereich unterhalb der Klappe frei bleiben.

Elektroanschluss
Beachten Sie die VDE 0100 und die Vorschriften des örtlichen Energieversorgers.
Der Netzspannungsanschluss erfolgt an der Klemmleiste im Gerät.
Der Anschluss an das Stromnetz ist nur als fester Anschluss möglich. Das Gerät muss über eine Trennstrecke von mindestens 3 mm allpolig vom Netzanschluss getrennt werden können. Diese Anforderung wird von Schützen, LS-Schaltern, Sicherungen usw. übernommen.

Luftanschlüsse
Die Fortluft-Austrittsoffnung durch die Außenwand sollte nicht auf benachbarte Fenster von Wohn- und Schlafräumen gerichtet werden.
Die Außen-/Fortluftführung erfolgt zentral. Ein auf das Gerät abgestimmtes Wetterschutzgitter gehört zum Lieferumfang.
Die Installation von Zu- und Abluft erfolgt vorzugsweise mit Flachkanälen und entsprechenden Formteilen.

Kondensatablauf

LWZ 130
Durch die Wärmerückgewinnung entsteht im Gerät Kondenswasser. Um das Kondenswasser abzuleiten, verfügt das Gerät über eine eingebaute Kondensatpumpe. Leiten Sie das Kondensat weiter in eine frostsichere Ablussleitung mit natürlicher Gefälle. Das Kondensat muss frei aus der Leitung ablaufen können.

Abgleich der Luft-Volumenströme
Um den eingestellten Luftvolumenstrom unabhängig vom Luftwiderstand konstant zu halten, passt die integrierte Elektronik dauernd die Drehzahl beider Lüfter an, daher sind die Drehzahlen der beiden Lüfter nicht immer konstant.
Produktgruppenzubehör

LWZ 130 / Enthalpie Zubehör

FMS G4-10 130/135

Ersatzfiltermatten für die zentralen Lüftungsgeräte 130/135 aus bruchsicheren Polyesterfasern mit teilweise progressivem Aufbau, thermisch gebunden, temperaturbeständig bis 100 Grad C.

<table>
<thead>
<tr>
<th>Filterklasse</th>
<th>ISO Coarse > 60 % (G4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FMS G4-10 130/135</th>
</tr>
</thead>
<tbody>
<tr>
<td>238923</td>
</tr>
</tbody>
</table>

FMK M5-2 130/135

Ersatzfilterkassetten für die Zuluft die zentralen Lüftungsgeräte 130/135 aus bruchsicheren Polyesterfasern mit teilweise progressivem Aufbau, thermisch gebunden, temperaturbeständig bis 100 Grad C, Z-gefaltet im stabilen Rahmen.

<table>
<thead>
<tr>
<th>Filterklasse</th>
<th>F6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FMK M5-2 130/135</th>
</tr>
</thead>
<tbody>
<tr>
<td>238924</td>
</tr>
</tbody>
</table>

FMK F7-2 130/135

Ersatzfilterkassetten für die Zuluft die zentralen Lüftungsgeräte 130/135 aus bruchsicheren Polyesterfasern mit teilweise progressivem Aufbau, thermisch gebunden, temperaturbeständig bis 100 Grad C, Z-gefaltet im stabilen Rahmen.

<table>
<thead>
<tr>
<th>Filterklasse</th>
<th>F7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FMK F7-2 130/135</th>
</tr>
</thead>
<tbody>
<tr>
<td>238925</td>
</tr>
</tbody>
</table>
Installation

☐ Der frostfreie Aufstellungsort ist festgelegt.

☐ Fläche, Volumen und Raumhöhe des Aufstellungsraumes entsprechen den technischen Vorgaben des Gerätes inklusive montierter Luftleitungen und sonstigem Zubehör.

☐ Die zulässige Deckenbelastung ist für das Gewicht des Gerätes ausreichend.

☐ Eine Körperschall-Übertragung auf das Gebäude ist weitestgehend ausgeschlossen.

☐ Das Kondenswasser wird mit natürlichem Gefälle in den bestehenden Abfluss in der Nähe des Gerätes eingeleitet.

☐ Die Position der Fernbedienung und die elektrische Verbindung zum Gerät sind definiert.

Lüftung - allgemein

☐ Die zu beheizenden Räume sind definiert.

☐ Der Luftvolumenstrom ist für jeden Raum festgelegt.

☐ Das zu belüftende Gesamt-Raumvolumen entspricht den Mindest- und Maximalvorgaben des Gerätes.

☐ Die Luftmenge pro Ventil wurde definiert.

☐ Der Gesamt-Luftwechsel des Gebäudes liegt zwischen 0,4 und 0,6-fach.

☐ Die Strömungsgeschwindigkeit im Abluftsystem ist < 3 m/s.

☐ Die Strömungsgeschwindigkeit im Zuluftsystem ist < 3 m/s.

Luftleitungsstrasse

☐ Die Luftleitungsstrasse und die Luftleitungsdurchmesser sind definiert. Auf eine möglichst einfach zu realisierende bauseitige Verlegung wurde geachtet.

☐ Die Länge des Kombirohres für Außen- und Fortluft ist ohne Verlängerung ausreichend.

☐ Die Länge des Kombirohres wird mit der Zubehör-Verlängerung vergrößert.

☐ Wanddurchbruch und Kombikanalanschluss am Gerät müssen axial ausgerichtet sein.

☐ Bei der Positionierung der Zu- und Abluftventile wurde auf die optimale Raumdurchströmung bei einer geringen Strömungsgeschwindigkeit geachtet.

☐ Das Küchen-Abluftventil ist nicht in unmittelbarer Nähe der Dunstabzugshaube positioniert.

☐ Die Dunstabzugshaube ist mit einer selbsttätigen Rückschlagklappe ausgestattet oder ist eine Umluft-Dunstabzugshaube. Es erfolgt kein Eintrag von Außenluft durch die Dunstabzugshaube.

☐ Reinigungs- und Wartungsoffnungen für alle Luftleitungen sind definiert.

☐ Die Position von Schalldämpfern für Wohn- und Schlafzimmer wurden bei der Lüftungsplanung definiert.

☐ Die Überströmöffnungen sind für den geplanten Luftvolumenstrom ausreichend groß und im Gebäudeplan definiert.

Kachel- und Kaminöfen

☐ Kachel- oder Kaminofen wird raumluftunabhängig betrieben.

☐ Kabel wurde vom Kachel- oder Kaminofen zum Lüftungsgerät verlegt, um bei Bedarf eine geeignete Sicherheitseinrichtung anzuschließen.

☐ Der raumluftabhängige Kachel- oder Kaminofen ist mit einer Sicherheitseinrichtung ausgestattet, mit separater Verbrennungsluftversorgung versehen und mit der Lüftungsanlage elektrisch verbunden.

☐ Freigabe vom Schornsteinfeger liegt vor.
Lüftung mit dezentraler Zu- und Abluft und Wärmerückgewinnung

Produktübersicht

Gerätetypen und Einsatzzwecke

<table>
<thead>
<tr>
<th>Gerätetypen</th>
<th>LWE 40</th>
<th>LA 50</th>
<th>LA 60 VE-U</th>
<th>LA 60 VE-A</th>
<th>LWA 100</th>
<th>LWA 252</th>
<th>LWA 252 SOL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>236659</td>
<td>234656</td>
<td>201450</td>
<td>201451</td>
<td>221470</td>
<td>074264</td>
<td>074265</td>
</tr>
<tr>
<td>Funktionen Lüftung</td>
<td>Nur Lüften</td>
<td>Nur Lüften</td>
<td>Nur Lüften</td>
<td>Nur Lüften</td>
<td>Lüften und Warmwasser</td>
<td>Lüften und Warmwasser</td>
<td>Lüften und Warmwasser</td>
</tr>
<tr>
<td>Funktion Heizen</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Funktion Kühlung</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Funktion Warmwasser</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Funktion Solar</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>Einsatzbereich Modernisierung</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Einsatzbereich Neubau</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Hausgröße Neubau m²</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><240</td>
<td><240</td>
</tr>
<tr>
<td>Hausgröße Modernisierung m²</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><240</td>
<td><240</td>
</tr>
</tbody>
</table>
Kurz und bündig

- Dezentrales Lüftungsgerät mit Wärmerückgewinnung für Neubau und Sanierung
- Teleskopgehäuse individuell auf Wandstärke einstellbar dank aufgeprägter Längenskala
- Einfaches Verlegen der Anschlussleitung durch integrierte Kabelführung im Teleskopgehäuse
- Kompakte Lüftereinheit ermöglicht schnellen Filterwechsel und Sichtkontrolle des Wärmeübertragers ohne Werkzeug
- Keine Laufspuren an der Fassade durch Wegleitung des Kondensats vom Mauerwerk
- Leise im Betrieb
- Mit nur einer Steuereinheit bis zu 8 Lüfter kombinierbar
- Moderner EC-Lüfter sorgt für stabile Luftvolumenströme auch in windexponierten Lagen
- Wärmeübertrager mit Aluminium-Oberfläche ermöglicht eine besonders schnelle und hygienische Reinigung
- Sehr gute Filterwirkung durch Filter auf der Innen- und Außenseite
- Einsatz von M5- oder F7-Feinstaubfilters auf der Innenraumseite bei nur geringem Luftvolumenstromrückgang optional möglich

ANWENDUNG: Dezentrales Lüftungsgerät mit Wärmerückgewinnung zur Be- und Entlüftung von Wohnungen und kleinen Gewerbeobjekten.

EFFIZIENZ: EC-Lüfter sorgt für eine effiziente Betriebsweise.

INSTALLATION: Einbau in runde oder quadratische Wanddurchbrüche. Elektroanschluss auf der Innenseite der Ventilatoreinheit leicht zugänglich.

Arbeitsweise

Notwendiges Zubehör

- 236669 ZLWE 40-2
- 236670 ZLWE 40-4
- 236671 ZLWE 40-8

Weiteres Zubehör

- 236672 ZLWE 40 CLOCK
- 236673 ZLWE 40 CO2
- 236674 ZLWE 40 HUMIDITY
- 236675 FMS G2-4 LWE 40
- 236676 FMS G4-4 LWE 40
- 236677 FMS M5-4 LWE 40
- 236678 FMS F7-4 LWE 40
Technische Daten

LWE 40 236659

<table>
<thead>
<tr>
<th>Schallangaben</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Schallleistungspegel L_{W\text{ges}} bezogen auf Luftvolumenstrom</td>
<td>dB(A)</td>
</tr>
</tbody>
</table>

| Einsatzgrenzen | °C | -15 bis +40 |

Schallleistungspegel

| Einsatzgrenzen | °C | -15 bis +40 |

Energetische Daten

| Filterklasse | ISO Coarse > 60 % (G4) | ISO Coarse > 30 % (G2) |
| Schutzart (IP) | IP44 |

Ausführungen

Höhe	mm	258
Breite	mm	258
Tiefe	mm	550

Dimensionen

| Maximale Aufstellhöhe | m | 2000 |
| Durchgangsöffnung min. | mm | Ø 200, quadratisch 185x185 |

Gewichte

| Gewicht | kg | 4,25 |

Werte

Luftvolumenstrom	m³/h	20/30/40/70
Luftvolumenstrom Gegentaktbetrieb	m³/h	10/15/20/35
Wärmebereitstellungsgrad bis	%	93
Wandstärke	mm	300 - 550

Funktionen Lüftung

Funktion Lüften	-
Funktion Heizen	-
Funktion Kühlen	-
Funktion Warmwasser	-
Funktion Solar	-

Einsatzbereich

Modernisierung	Neubau	
Wärmerückgewinnung	x	
Hausgröße Neubau	m²	<100
Hausgröße Modernisierung	m²	<100
Wandstärke inklusive Putz

<table>
<thead>
<tr>
<th></th>
<th>LWE 40 TG-550</th>
<th>LWE 40 TG-800</th>
</tr>
</thead>
<tbody>
<tr>
<td>A mm</td>
<td>300-550</td>
<td>550-800</td>
</tr>
</tbody>
</table>

Mindestabstände

- Seitlich neben der Innenblende muss zu Möbeln ein Abstand von 350 mm sein.
- An der Gebäudeinnenseite muss vor der Innenblende ausreichend Freiraum sein zum Einsetzen und Entnehmen der Lüftereinheit.
- Installieren Sie das Gerät nicht im Bereich von Sitzgarnituren und nicht am Kopfende des Bettes.
- Rund um die Außenblende muss ein Abstand von 100 mm zu Fallrohren, Balkonen und sonstigen festen Objekten sein.

Abstände zwischen Geräten, die im Gegentakt arbeiten

Geräte, die paarweise im Gegentakt arbeiten, müssen mit einem horizontalen und vertikalen Mindestabstand montiert werden.

Gefälle

Wir empfehlen, die Oberkante der Innenblende 30 mm unterhalb der Oberkante des Fensters zu platzieren.
Lüftung mit dezentraler Zu- und Abluft und Wärmerückgewinnung
LWE 40

Wandaufbau

Festes Mauerwerk mit Wärmedämm-Verbundsystem (Draufsicht)

1 Außenputz
2 Wärmedämm-Verbundsystem
3 Stein
4 Innenputz
5 2K-PUR-Montageschaum

Mauerwerk mit Holzständerbauweise (Draufsicht)

1 Weichfaserplatte
2 Tragendes Element
3 Holzständerwerk mit dazwischenliegender Dämmung
4 OSB-Platte
5 Installationsebene (Holzlattung mit dazwischenliegender Dämmung)
6 Gipskartonplatte
7 Holzumrandung
8 2K-PUR-Montageschaum
Verteilen Sie die Geräte paarweise auf die Anschlussklemmen „Lüfter 1“ und „Lüfter 2“. Prüfen Sie, ob die paarweise zusammengehörigen Geräte im Gegentakt arbeiten. Im Gegentaktbetrieb befördert ein Gerät die Abluft aus dem Gebäude ins Freie befördert. Das andere Gerät saugt Außenluft in das Gebäude.
Anschluss weiterer Komponenten

Bei kombiniertem Betrieb externer Schalteinrichtungen übernimmt die Steuereinheit die zuletzt durchgeführte Einstellung. Die Bedieneinheit zeigt dies mit wenigen Sekunden Verzögerung an.

Wenn die Anforderung über die digitalen Eingänge abfällt, übernimmt die Bedieneinheit die letzte zuvor eingestellte Betriebsstufe. Wenn die Gebäudetechnik die Anlage vollständig abschalten soll, muss die Spannungsversorgung unterbrochen werden.

Zeitschaltuhr

CO₂-Sensor

Gebäudeautomation

Schließen Sie die Gebäudeautomation an die potentialfreien Eingangskontakte der Steuereinheit an (siehe Installationsanleitung, Kapitel „Montage / Elektrischer Anschluss / Aktivierung von Lüfterstufen durch ein externes Signal“). Beispiele: BACnet, EnOcean, ZigBee, KNX/EIB, DALI, Modbus, LON

Normgerechte Lüftung

Lüftung mit dezentraler Zu- und Abluft und Wärmerückgewinnung

LWE 40
Lüftung mit dezentraler Zu- und Abluft und Wärmerückgewinnung
LWE 40 Zubehör

Zubehör

LWE 40 VE

<table>
<thead>
<tr>
<th>LWE 40 VE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Luftpolumenstrom</td>
<td>m³/h</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
<tr>
<td>Nennspannung</td>
<td>V</td>
</tr>
</tbody>
</table>

LWE 40 TG-550
Teleskopgehäuse aus Kunststoff für die Montage des dezentralen Lüftungsgerätes, auf Mauerstärke kürzbar.

<table>
<thead>
<tr>
<th>LWE 40 TG-550</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wandstärke</td>
<td>mm</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
</tbody>
</table>

LWE 40 TG-800
Teleskopgehäuse aus Kunststoff für die Montage des dezentralen Lüftungsgerätes, auf Mauerstärke kürzbar.

<table>
<thead>
<tr>
<th>LWE 40 TG-800</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wandstärke</td>
<td>mm</td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
</tbody>
</table>

LWE 40 BI
Innenblende aus Kunststoff mit Membranverschluss

<table>
<thead>
<tr>
<th>LWE 40 BI</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
<tr>
<td>Farbe</td>
<td></td>
</tr>
</tbody>
</table>

LWE 40 SBI

<table>
<thead>
<tr>
<th>LWE 40 SBI</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
<tr>
<td>Farbe</td>
<td></td>
</tr>
</tbody>
</table>
Lüftung mit dezentraler Zu- und Abluft und Wärmerückgewinnung

LWE 40 Zubehör

<table>
<thead>
<tr>
<th>LWE 40 BA W</th>
<th>Außenblende, Edelstahl weiß pulverbeschichtet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWE 40 BA W</td>
<td>236665</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>219</td>
<td></td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>214</td>
<td></td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Farbe</td>
<td>weiß</td>
</tr>
<tr>
<td>Normschallpegeldifferenz</td>
<td>dB</td>
</tr>
<tr>
<td>37</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LWE 40 BA S</th>
<th>Außenblende, Edelstahl blank gebürstet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWE 40 BA S</td>
<td>236666</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>219</td>
<td></td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>214</td>
<td></td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Normschallpegeldifferenz</td>
<td>dB</td>
</tr>
<tr>
<td>37</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LWE 40 SBA W</th>
<th>Schallschutz-Außenblende aus Edelstahl, weiß pulverbeschichtet. Dn,e,w = 40 dB.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWE 40 SBA W</td>
<td>236667</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>269</td>
<td></td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>214</td>
<td></td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
<tr>
<td>124</td>
<td></td>
</tr>
<tr>
<td>Farbe</td>
<td>weiß</td>
</tr>
<tr>
<td>Normschallpegeldifferenz</td>
<td>dB</td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LWE 40 SBA S</th>
<th>Schallschutz-Außenblende aus Edelstahl, blank gebürstet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWE 40 SBA S</td>
<td>236668</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>269</td>
<td></td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>214</td>
<td></td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
<tr>
<td>124</td>
<td></td>
</tr>
<tr>
<td>Normschallpegeldifferenz</td>
<td>dB</td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>
Lüftung mit dezentraler Zu- und Abluft und Wärmerückgewinnung
LWE 40 Zubehör

ZLWE 40-2

Steuerungs-Set bestehend aus Steuereinheit, Netzteil und Be-
dienteil inkl. Abdeckrahmen zur Steuerung von 2 Lüftungsge-
räten. Die Steuereinheit ist mit einer LED ausgestattet, die den
Zeitpunkt zur Reinigung bzw. zum Austausch des Filters signa-
лизiert. Die Anzeige erfolgt abhängig von der Betriebsdauer. Der
Einbau erfolgt in die mitgelieferte Unterputzdose.

<table>
<thead>
<tr>
<th>ZLWE 40-2</th>
<th>236669</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe Netzteil</td>
<td>mm</td>
</tr>
<tr>
<td>Breite Netzteil</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe Netzteil</td>
<td>mm</td>
</tr>
<tr>
<td>Höhe Steuereinheit</td>
<td>mm</td>
</tr>
<tr>
<td>Breite Steuereinheit</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe Steuereinheit</td>
<td>mm</td>
</tr>
<tr>
<td>Anschlussleistung</td>
<td>W</td>
</tr>
<tr>
<td>Betriebsstrom</td>
<td>A</td>
</tr>
<tr>
<td>Ausgangsspannung</td>
<td>V</td>
</tr>
<tr>
<td>Netzanschluss</td>
<td>1/N 220-240 V 50 Hz</td>
</tr>
<tr>
<td>Farbe</td>
<td>weiß</td>
</tr>
<tr>
<td>Schutzart (IP)</td>
<td>IP41</td>
</tr>
</tbody>
</table>

ZLWE 40-4

Steuerungs-Set bestehend aus Steuereinheit, Netzteil und Be-
dienteil zur Steuerung von bis zu 4 Lüftungsgeräten. Die Steu-
ereinheit ist mit einer LED ausgestattet, die den Zeitpunkt zur
Reinigung bzw. zum Austausch des Filters signalisiert. Die Anzei-
ge erfolgt abhängig von der Betriebsdauer. Der Einbau des Be-
dienteils erfolgt in die mitgelieferte Unterputzdose. Das Netzteil
ist für eine Hutschienenmontage ausgelegt.

<table>
<thead>
<tr>
<th>ZLWE 40-4</th>
<th>236670</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe Netzteil</td>
<td>mm</td>
</tr>
<tr>
<td>Breite Netzteil</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe Netzteil</td>
<td>mm</td>
</tr>
<tr>
<td>Höhe Steuereinheit</td>
<td>mm</td>
</tr>
<tr>
<td>Breite Steuereinheit</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe Steuereinheit</td>
<td>mm</td>
</tr>
<tr>
<td>Anschlussleistung</td>
<td>W</td>
</tr>
<tr>
<td>Betriebsstrom</td>
<td>A</td>
</tr>
<tr>
<td>Ausgangsspannung</td>
<td>V</td>
</tr>
<tr>
<td>Netzanschluss</td>
<td>1/N 220-240 V 50 Hz</td>
</tr>
<tr>
<td>Farbe</td>
<td>weiß</td>
</tr>
<tr>
<td>Schutzart (IP)</td>
<td>IP41</td>
</tr>
</tbody>
</table>
Lüftung mit dezentraler Zu- und Abluft und Wärmerückgewinnung
LWE 40 Zubehör

ZLWE 40-8

<table>
<thead>
<tr>
<th>ZLWE 40-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>236671</td>
</tr>
<tr>
<td>Höhe Netzeil mm</td>
</tr>
<tr>
<td>Breite Netzeil mm</td>
</tr>
<tr>
<td>Tiefe Netzeil mm</td>
</tr>
<tr>
<td>Höhe Steuereinheit mm</td>
</tr>
<tr>
<td>Breite Steuereinheit mm</td>
</tr>
<tr>
<td>Tiefe Steuereinheit mm</td>
</tr>
<tr>
<td>Anschlussleistung W</td>
</tr>
<tr>
<td>Betriebsstrom A</td>
</tr>
<tr>
<td>Ausgangsspannung V</td>
</tr>
<tr>
<td>Netzanschluss 1/N 220-240 V 50 Hz</td>
</tr>
<tr>
<td>Farbe</td>
</tr>
<tr>
<td>Schutzart (IP)</td>
</tr>
</tbody>
</table>

LWE 40 WES
Wandeinbausatz für den Einbau in der Rohbauphase als Platzhalter für das Teleskopgehäuse.

<table>
<thead>
<tr>
<th>LWE 40 WES</th>
</tr>
</thead>
<tbody>
<tr>
<td>201669</td>
</tr>
<tr>
<td>Länge mm</td>
</tr>
<tr>
<td>Höhe mm</td>
</tr>
<tr>
<td>Breite mm</td>
</tr>
</tbody>
</table>

LWE 40 LKA W

<table>
<thead>
<tr>
<th>LWE 40 LKA W</th>
</tr>
</thead>
<tbody>
<tr>
<td>239604</td>
</tr>
<tr>
<td>Höhe mm</td>
</tr>
<tr>
<td>Breite mm</td>
</tr>
<tr>
<td>Tiefe mm</td>
</tr>
<tr>
<td>Farbe</td>
</tr>
</tbody>
</table>
LWE 40 LKA S

<table>
<thead>
<tr>
<th>LWE 40 LKA S</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>317</td>
</tr>
<tr>
<td>Breite</td>
<td>70</td>
</tr>
<tr>
<td>Tiefe</td>
<td>560</td>
</tr>
<tr>
<td>Farbe</td>
<td>silber</td>
</tr>
</tbody>
</table>

LWE 40 LKA-V

<table>
<thead>
<tr>
<th>LWE 40 LKA-V</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>277</td>
</tr>
<tr>
<td>Breite</td>
<td>60</td>
</tr>
<tr>
<td>Tiefe</td>
<td>220</td>
</tr>
<tr>
<td>Farbe</td>
<td>silber</td>
</tr>
</tbody>
</table>

Lüftung mit dezentraler Zu- und Abluft und Wärmerückgewinnung
LWE 40 Zubehör

<table>
<thead>
<tr>
<th>LWE 40 LFA W</th>
<th>239607</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
<tr>
<td>Farbe</td>
<td>weiß</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LWE 40 LFA S</th>
<th>239608</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
<tr>
<td>Farbe</td>
<td>silber</td>
</tr>
</tbody>
</table>
Lüftung mit dezentraler Zu- und Abluft und Wärmerückgewinnung
LWE 40 Zubehör

ZLWE 40 CLOCK
Zeitschaltuhr für den zeitabhängigen Betrieb in 2 unterschiedlichen Stufen.

<table>
<thead>
<tr>
<th>ZLWE 40 CLOCK</th>
<th>236672</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
</tbody>
</table>

Höhe mm 105
Breite mm 36
Tiefe mm 60

ZLWE 40 CO2

<table>
<thead>
<tr>
<th>ZLWE 40 CO2</th>
<th>236673</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
</tbody>
</table>

Höhe mm 100
Breite mm 80
Tiefe mm 28

ZLWE 40 HUMIDITY
Feuchtesensor für den feuchtegesteuerten Betrieb in 2 unterschiedlichen Stufen.

<table>
<thead>
<tr>
<th>ZLWE 40 HUMIDITY</th>
<th>236674</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
<tr>
<td>Einstellbereich relative Luftfeuchtigkeit</td>
<td>%</td>
</tr>
<tr>
<td>Schaltendifferenz</td>
<td>% rF</td>
</tr>
<tr>
<td>Messgenauigkeit</td>
<td>% rF</td>
</tr>
<tr>
<td>Messabweichung pro Jahr</td>
<td>% rF</td>
</tr>
</tbody>
</table>

Höhe mm 76
Breite mm 76
Tiefe mm 34
Einstellbereich relative Luftfeuchtigkeit 30-90
Schaltendifferenz % rF 6
Messgenauigkeit % rF 5
Messabweichung pro Jahr % rF -1,5

FMS G2-4 LWE 40
Filterset mit besonders niedrigem Druckverlust bei gleichzeitig hochwertiger Filterung der Luft.

<table>
<thead>
<tr>
<th>FMS G2-4 LWE 40</th>
<th>236675</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anwendung</td>
<td>Luftungsgeräte</td>
</tr>
<tr>
<td>Filterklasse</td>
<td>G2</td>
</tr>
<tr>
<td>Filterklasse</td>
<td>ISO Coarse > 30 % (G2)</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
</tbody>
</table>

Anwendung Luftungsgeräte
Filterklasse G2
Filterklasse ISO Coarse > 30 % (G2)
Höhe mm 125
Breite mm 125
Tiefe mm 10

FMS G4-4 LWE 40
Filterset mit besonders niedrigem Druckverlust bei gleichzeitig hochwertiger Filterung der Luft.

<table>
<thead>
<tr>
<th>FMS G4-4 LWE 40</th>
<th>236676</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anwendung</td>
<td>Luftungsgeräte</td>
</tr>
<tr>
<td>Filterklasse</td>
<td>G4</td>
</tr>
<tr>
<td>Filterklasse</td>
<td>ISO Coarse > 60 % (G4)</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
</tbody>
</table>

Anwendung Luftungsgeräte
Filterklasse G4
Filterklasse ISO Coarse > 60 % (G4)
Höhe mm 124
Breite mm 124
Tiefe mm 36
Lüftung mit dezentraler Zu- und Abluft und Wärmerückgewinnung

LWE 40 Zubehör

FMS M5-4 LWE 40

Filterset mit besonders niedrigem Druckverlust bei gleichzeitig hochwertiger Filterung der Luft.

<table>
<thead>
<tr>
<th>Anwendung</th>
<th>Lüftungsgeräte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filterklasse</td>
<td>ePM10 ≥ 50 % (M5)</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
</tbody>
</table>

FMS F7-4 LWE 40

Filterset mit besonders niedrigem Druckverlust bei gleichzeitig hochwertiger Filterung der Luft.

<table>
<thead>
<tr>
<th>Anwendung</th>
<th>Lüftungsgeräte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filterklasse</td>
<td>F7</td>
</tr>
<tr>
<td>Filterklasse</td>
<td>ePM1 ≥ 50 % (F7)</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
</tbody>
</table>

Arbeitsweise

Weiteres Zubehör
234181 ZLA 30 S3
235106 LASB i
235107 LASB a
236314 ZLA M18
236315 ZLA M60
189814 FMS ALD G3
189815 FMS ALD G2
227925 FMK ALD M5

Kurz und bündig
- Einfachste Installation und Bedienung
- Bedienung über ZLA 30 S3
- Mindestrohrlänge von 260mm
- Gleiches Design wie ALD 160
- Vier sternförmige Schalldämmelemente
Technische Daten

<table>
<thead>
<tr>
<th></th>
<th>LA 50 234656</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungsaufnahmen</td>
<td></td>
</tr>
<tr>
<td>Leistungsaufnahme kleine Stufe (15 m³/h)</td>
<td>W 0,6</td>
</tr>
<tr>
<td>Leistungsaufnahme mittlere Stufe (30 m³/h)</td>
<td>W 1,3</td>
</tr>
<tr>
<td>Leistungsaufnahme große Stufe (60 m³/h)</td>
<td>W 7,2</td>
</tr>
<tr>
<td>Schallangaben</td>
<td></td>
</tr>
<tr>
<td>Schallpegel (EN 12102)</td>
<td>dB(A) 19,5 (bei 15 m³/h) / 31,5 (bei 30 m³/h)</td>
</tr>
<tr>
<td>Elektrische Daten</td>
<td></td>
</tr>
<tr>
<td>Leistungsaufnahme</td>
<td>W 0,6 - 7,2</td>
</tr>
<tr>
<td>Leistungsaufnahme max.</td>
<td>W 8</td>
</tr>
<tr>
<td>Nennspannung</td>
<td>V 12</td>
</tr>
<tr>
<td>Ausführungen</td>
<td></td>
</tr>
<tr>
<td>Schutzart (IP)</td>
<td>IP20</td>
</tr>
<tr>
<td>Filterklasse</td>
<td>ePM10 ≥ 50 % (M5)</td>
</tr>
<tr>
<td>Dimensionen</td>
<td></td>
</tr>
<tr>
<td>Höhe</td>
<td>mm 180</td>
</tr>
<tr>
<td>Breite</td>
<td>mm 180</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm 56</td>
</tr>
<tr>
<td>Maximale Aufstellhöhe</td>
<td>m 2000</td>
</tr>
<tr>
<td>Gewichte</td>
<td>kg 1,6</td>
</tr>
<tr>
<td>Werte</td>
<td></td>
</tr>
<tr>
<td>Luftvolumenstrom</td>
<td>m³/h 15-60</td>
</tr>
</tbody>
</table>

Funktionen Lüftung

- Nur Lüften
- Funktion Heizen
- Funktion Kühlen
- Funktion Warmwasser
- Funktion Solar
- Einsatzbereich Modernisierung
- Einsatzbereich Neubau
- Hausgröße Neubau m² <100
- Hausgröße Modernisierung m² <100
Lüftung mit dezentraler Zu- und Abluft ohne Wärmerückgewinnung
LA 50

Maße und Anschlüsse

Elektrischer Anschluss

1 Doppelwippschalter (entfällt bei Anschluss an RCT)
2 Komfort-Bedieneinheit RCT (optional)
3 Netzteil
4 zweites Gerät nur mit ZLA M60
BK schwarz
BU blau
GY grau
RD rot
VT violett
Lüftung mit dezentraler Zu- und Abluft ohne Wärmerückgewinnung
LA 50

Planungshinweise
Bezüglich einer normgerechten Auslegung der Lüftungsanlage müssen die Hinweise im Kapitel „Normgerechte Lüftung“ beachtet werden.

Normgerechte Lüftung

A 220 mm
B 220 mm
S von der Statik der Wand vorgegebener Abstand
Zubehör

ZLA 30 S3

Serien-Schalter mit drei Wippen zur Schaltung der dezentralen Lüftungsgeräte mit und ohne Wärmerückgewinnung.

<table>
<thead>
<tr>
<th>ZLA 30 S3</th>
<th>234181</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
</tbody>
</table>

ZLA M18

<table>
<thead>
<tr>
<th>ZLA M18</th>
<th>236314</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe Netzteil</td>
<td>mm</td>
</tr>
<tr>
<td>Breite Netzteil</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe Netzteil</td>
<td>mm</td>
</tr>
<tr>
<td>Höhe Steuereinheit</td>
<td>mm</td>
</tr>
<tr>
<td>Breite Steuereinheit</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe Steuereinheit</td>
<td>mm</td>
</tr>
<tr>
<td>Anschlussleistung</td>
<td>W</td>
</tr>
<tr>
<td>Betriebsstrom</td>
<td>A</td>
</tr>
<tr>
<td>Ausgangsspannung</td>
<td>V</td>
</tr>
<tr>
<td>Schutzart (IP)</td>
<td></td>
</tr>
</tbody>
</table>

ZLA M60

<table>
<thead>
<tr>
<th>ZLA M60</th>
<th>236315</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe Netzteil</td>
<td>mm</td>
</tr>
<tr>
<td>Breite Netzteil</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe Netzteil</td>
<td>mm</td>
</tr>
<tr>
<td>Höhe Steuereinheit</td>
<td>mm</td>
</tr>
<tr>
<td>Breite Steuereinheit</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe Steuereinheit</td>
<td>mm</td>
</tr>
<tr>
<td>Anschlussleistung</td>
<td>W</td>
</tr>
<tr>
<td>Betriebsstrom</td>
<td>A</td>
</tr>
<tr>
<td>Ausgangsspannung</td>
<td>V</td>
</tr>
<tr>
<td>Schutzart (IP)</td>
<td></td>
</tr>
</tbody>
</table>

FMS ALD G2

Austauschfilter für verschmutzte/defekte Filtermatten für das Außenwandventil ALD sowie das Lüftungsgerät LA 50.

<table>
<thead>
<tr>
<th>FMS ALD G2</th>
<th>189815</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anwendung</td>
<td>Lüftungsgeräte</td>
</tr>
<tr>
<td>Filterklasse</td>
<td>G2</td>
</tr>
<tr>
<td>Filterklasse</td>
<td>ISO Coarse > 30 % (G2)</td>
</tr>
<tr>
<td>Anzahl</td>
<td>5</td>
</tr>
</tbody>
</table>
FMK ALD M5

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FMK ALD M5</td>
<td></td>
<td></td>
<td></td>
<td>227925</td>
</tr>
</tbody>
</table>

LASB i

Schallschutzbende LASB i für den Innenbereich. Schallreduzierung bis zu 3 dB(B). Designblende aus hochwertigem Material mit Filtermatten ausgestattet.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LASB i</td>
<td></td>
<td>235106</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
<td>250</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
<td>250</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
<td>78</td>
</tr>
</tbody>
</table>

LASB a

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LASB a</td>
<td></td>
<td>235107</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
<td>235</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
<td>205</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
<td>72</td>
</tr>
<tr>
<td>Farbe</td>
<td></td>
<td>weiß</td>
</tr>
</tbody>
</table>
Lüftung mit dezentraler Zu- und Abluft ohne Wärmerückgewinnung

LA 60

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Typ</th>
<th>Beschreibung</th>
<th>Stck.</th>
<th>Best.-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LA 60 VE-U</td>
<td>Lüftereinheit mit glatter Innenblende für Unterputzgehäuse</td>
<td>1</td>
<td>201450</td>
</tr>
<tr>
<td></td>
<td>LA 60 G-U</td>
<td>Unterputzgehäuse aus Kunststoff ohne Brandschutzfunktion</td>
<td>1</td>
<td>201448</td>
</tr>
<tr>
<td></td>
<td>ZLA 60-T</td>
<td>Steuerungsmodul mit einstellbarer Einschaltverzögerung und Zeitnachlauf</td>
<td>1</td>
<td>201463</td>
</tr>
<tr>
<td></td>
<td>LA 60 VE-A</td>
<td>Lüftereinheit mit glatter Innenblende für Aufputzmontage</td>
<td>1</td>
<td>201451</td>
</tr>
<tr>
<td></td>
<td>ZLA 60-T</td>
<td>Steuerungsmodul mit einstellbarer Einschaltverzögerung und Zeitnachlauf</td>
<td>1</td>
<td>201463</td>
</tr>
<tr>
<td></td>
<td>LA 66 BRA</td>
<td>Absperrvorrichtung für LA 60 VE-A</td>
<td>1</td>
<td>201462</td>
</tr>
<tr>
<td></td>
<td>ZLA 60-T</td>
<td>Steuerungsmodul mit einstellbarer Einschaltverzögerung und Zeitnachlauf</td>
<td>1</td>
<td>201663</td>
</tr>
</tbody>
</table>

214 | Planungshandbuch Lüftung www.stiebel-eltron.de
<table>
<thead>
<tr>
<th>Produkt</th>
<th>Typ</th>
<th>Beschreibung</th>
<th>Stck.</th>
<th>Best.-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA 60 VE-U</td>
<td>Lüftereinheit mit glatter Innenblende für Unterputzgehäuse</td>
<td>1</td>
<td>201450</td>
<td></td>
</tr>
<tr>
<td>LA 60 G-U</td>
<td>Unterputzgehäuse aus Kunststoff ohne Brandschutzfunktion</td>
<td>1</td>
<td>201448</td>
<td></td>
</tr>
<tr>
<td>ZLA 60-H</td>
<td>Steuerungsmodul mit einstellbarem Feuchtesensor, fixer Einschaltverzögerung und Nachlaufzeit</td>
<td>1</td>
<td>201454</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201445</td>
</tr>
<tr>
<td>LA 60 VE-U</td>
<td>Lüftereinheit mit glatter Innenblende für Unterputzgehäuse</td>
<td>1</td>
<td>201450</td>
<td></td>
</tr>
<tr>
<td>LA 60 G-UB</td>
<td>Unterputzgehäuse aus Calciumsilikat mit Absperrvorrichtung</td>
<td>1</td>
<td>201449</td>
<td></td>
</tr>
<tr>
<td>ZLA 60-H</td>
<td>Steuerungsmodul mit einstellbarem Feuchtesensor, fixer Einschaltverzögerung und Nachlaufzeit</td>
<td>1</td>
<td>201454</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201446</td>
</tr>
<tr>
<td>LA 60 VE-A</td>
<td>Lüftereinheit mit glatter Innenblende für Aufputzmontage</td>
<td>1</td>
<td>201451</td>
<td></td>
</tr>
<tr>
<td>ZLA 60-H</td>
<td>Steuerungsmodul mit einstellbarem Feuchtesensor, fixer Einschaltverzögerung und Nachlaufzeit</td>
<td>1</td>
<td>201454</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201447</td>
</tr>
<tr>
<td>LA 60 VE-A</td>
<td>Lüftereinheit mit glatter Innenblende für Aufputzmontage</td>
<td>1</td>
<td>201451</td>
<td></td>
</tr>
<tr>
<td>LA 60 BRA</td>
<td>Absperrvorrichtung für LA 60 VE-A</td>
<td>1</td>
<td>201652</td>
<td></td>
</tr>
<tr>
<td>ZLA 60-H</td>
<td>Steuerungsmodul mit einstellbarem Feuchtesensor, fixer Einschaltverzögerung und Nachlaufzeit</td>
<td>1</td>
<td>201654</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201664</td>
</tr>
</tbody>
</table>
Lüftung mit dezentraler Zu- und Abluft ohne Wärmerückgewinnung

LA 60

LA 60 G-UB

Unterputzgehäuse aus Brandschutzmaterial zum Einbau der Lüftereinheit.

<table>
<thead>
<tr>
<th>LA 60 G-UB</th>
<th>201449</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
<tr>
<td>Abluft-Anschluss</td>
<td>DN</td>
</tr>
<tr>
<td>Gewicht</td>
<td>kg</td>
</tr>
</tbody>
</table>

[Diagram of LA 60 G-UB with dimensions and specifications]
Lüftung mit dezentraler Zu- und Abluft ohne Wärmerückgewinnung

LA 60

LA 60 G-U

Unterputzgehäuse aus Kunststoff (ABS) ohne Brandschutz zum Einbau der Lüftereinheit.

<table>
<thead>
<tr>
<th></th>
<th>LA 60 G-U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm 245</td>
</tr>
<tr>
<td>Breite</td>
<td>mm 245</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm 78</td>
</tr>
<tr>
<td>Abluft-Anschluss</td>
<td>DN 75</td>
</tr>
<tr>
<td>Gewicht</td>
<td>kg 0,5</td>
</tr>
</tbody>
</table>

![Diagram of LA 60 G-U](image)
LA 60 VE-U

ANWENDUNG: Lüftereinheit für Abluftgeräte zur Entlüftung von innenliegenden Räumen ohne Außenfenster.
EFFIZIENZ: Die Lüftereinheit verfügt über einen Präzisions-Außenläufermotor.

<table>
<thead>
<tr>
<th>LA 60 VE-U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luftvolumenstrom m^3/h</td>
</tr>
<tr>
<td>Höhe mm</td>
</tr>
<tr>
<td>Breite mm</td>
</tr>
<tr>
<td>Tiefe mm</td>
</tr>
<tr>
<td>Abluft-Anschluss DN</td>
</tr>
<tr>
<td>Anschluss DN 100 - 4, DN 125 - 6, DN 160 - 10 Geräte</td>
</tr>
<tr>
<td>Nennspannung V</td>
</tr>
<tr>
<td>Frequenz Hz</td>
</tr>
<tr>
<td>Schallleistungspegel L_{max} $dB(A)$</td>
</tr>
<tr>
<td>Filterklasse ISO Coarse $> 45%$ (G3)</td>
</tr>
<tr>
<td>Schutzart (IP)</td>
</tr>
<tr>
<td>Schutzklasse</td>
</tr>
<tr>
<td>Gewicht kg</td>
</tr>
</tbody>
</table>
ANWENDUNG: Lüftereinheit für Abluftgeräte zur Entlüftung von innenliegenden Räumen ohne Außenfenster.

AUSSTATTUNG/KOMFORT: Das Gehäuse, die Innenblende und der Filterträger sind aus hochwertigem, weißem Kunststoff gefertigt. Der modulare Aufbau mit aufsteckbarem Steuerungsmodul ermöglicht eine flexible Wahl des Funktionsumfangs der Ablufteinheit. Ein nachträglicher Austausch des Steuerungsmoduls ist auch im eingebauten Zustand möglich.

EFFIZIENZ: Die Lüftereinheit verfügt über einen Präzisions-Außenläufermotor.

INSTALLATION: Die Geräte sind je nach gewählter Ausführung für Wand- und Deckeneinbau oder Anbaumontage geeignet. Der Elektroanschluss der Lüftereinheit ist leicht zugänglich.

<table>
<thead>
<tr>
<th>LA 60 VE-A</th>
<th>201451</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luftvolumenstrom</td>
<td>m³/h</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
<tr>
<td>Abluft-Anschluss</td>
<td>DN</td>
</tr>
<tr>
<td>Anschluss DN 100 – 4, DN 125 – 6, DN 160 – 10 Geräte</td>
<td></td>
</tr>
<tr>
<td>Nennspannung</td>
<td>V</td>
</tr>
<tr>
<td>Frequenz</td>
<td>Hz</td>
</tr>
<tr>
<td>Schallleistungspegel</td>
<td>L₁₀₀₀</td>
</tr>
<tr>
<td>Filterklasse</td>
<td>ISO Coarse > 45 % (G3)</td>
</tr>
<tr>
<td>Schutzart (IP)</td>
<td>IPX5</td>
</tr>
<tr>
<td>Schutzklasse</td>
<td>II</td>
</tr>
<tr>
<td>Gewicht</td>
<td>kg</td>
</tr>
</tbody>
</table>
Lüftung mit dezentraler Zu- und Abluft ohne Wärmerückgewinnung

LA 60 BRA

Absperrvorrichtung für Aufputzlüfter

<table>
<thead>
<tr>
<th>LA 60 BRA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
</tbody>
</table>

Höhe: 120 mm
Breite: 120 mm
Tiefe: 100 mm

ZLA 60-T

Steuerung zum Aufstecken auf die Lüftereinheit. Einschaltverzögerung und Nachlaufzeit einstellbar.

<table>
<thead>
<tr>
<th>ZLA 60-T</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe Steuereinheit</td>
<td>mm</td>
</tr>
<tr>
<td>Breite Steuereinheit</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe Steuereinheit</td>
<td>mm</td>
</tr>
<tr>
<td>Anschlussleistung</td>
<td>W</td>
</tr>
<tr>
<td>Betriebsstrom</td>
<td>A</td>
</tr>
<tr>
<td>Netzanschluss</td>
<td>1/N ~ 230 V 50 Hz</td>
</tr>
<tr>
<td>Farbe</td>
<td>weiß</td>
</tr>
</tbody>
</table>

Höhe Steuereinheit: 92 mm
Breite Steuereinheit: 92 mm
Tiefe Steuereinheit: 42 mm
Anschlussleistung: 25 W
Betriebsstrom: 0.15 A

ZLA 60-H

Steuerung zum Aufstecken auf die Lüftereinheit. Feuchteabhängige Regelung, mit fixer Einschaltverzögerung und Nachlaufzeit.

<table>
<thead>
<tr>
<th>ZLA 60-H</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe Steuereinheit</td>
<td>mm</td>
</tr>
<tr>
<td>Breite Steuereinheit</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe Steuereinheit</td>
<td>mm</td>
</tr>
<tr>
<td>Anschlussleistung</td>
<td>W</td>
</tr>
<tr>
<td>Betriebsstrom</td>
<td>A</td>
</tr>
<tr>
<td>Netzanschluss</td>
<td>1/N ~ 230 V 50 Hz</td>
</tr>
<tr>
<td>Farbe</td>
<td>weiß</td>
</tr>
</tbody>
</table>

Höhe Steuereinheit: 92 mm
Breite Steuereinheit: 92 mm
Tiefe Steuereinheit: 42 mm
Anschlussleistung: 25 W
Betriebsstrom: 0.15 A
Zubehör

LWF W 100 VA - 60
Außenwanddurchführung aus Edelstahlrohr mit Dichtring für LA 60 Außen mit Wetterschutzgitter in Edelstahlkugeloptik.

<table>
<thead>
<tr>
<th>LWF W 100 VA - 60</th>
<th>231104</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anschlusdurchmesser</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

FMS G2-5 LA 60
Filterset mit besonders niedrigem Druckverlust bei gleichzeitig hochwertiger Filterung der Luft.

<table>
<thead>
<tr>
<th>FMS G2-5 LA 60</th>
<th>201455</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anwendung</td>
<td>Lüftungsgeräte</td>
</tr>
<tr>
<td>Filterklasse</td>
<td>G3</td>
</tr>
<tr>
<td>Filterklasse</td>
<td>ISO Coarse > 45 % (G3)</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
<tr>
<td>Durchmesser</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>220</td>
</tr>
</tbody>
</table>
Planungshinweise

DIN 18017 – Teil 3

Bei Einsatz eines LA 60 in fensterlosen Bädern und Toiletten sind die Anforderungen der DIN 18017-3 einzuhalten. Danach ist in Bädern eine planmäßige Luftmenge von 60 m³/h und in Toilettenräumen von 30 m³/h abzuführen. Der Volumenstrom darf in Zeiten geringen Luftbedarfs auf 15 m³/h abgesenkt werden. Das ausreichende Nachströmen von Frischluft ist sicherzustellen und rechnerisch nachzuweisen. Bei Neubauten mit hoher Luftdichtigkeit ist der natürliche Volumenstrom durch Infiltration meist nicht ausreichend, sodass in Wohn- und Schlafräumen zusätzlich Außenwand-Durchlässe vorzusehen sind. Die benötigte Anzahl kann überschlägig bestimmt werden:

\[\text{Anzahl ALD} = \frac{(q_{V,Ab,ges} - q_{V,Inf})}{q_{V,Ald}} \]

In jedem Zulufluerraum der Wohneinheit (Wohnen, Schlafen, Kind, Arbeiten, Gast) muss mindestens ein Außenwanddurchlass installiert werden.

Zentrale Entlüftungsanlagen

Im Geschosswohnungsbau ist es meist sinnvoll, die Abluft mehrerer Einzelentlüftungsanlagen über eine zentrale Abluftleitung abzuführen, folgende Anforderungen nach DIN 18017-3 sind dabei einzuhalten:
- Luftdichte Ausführung (überdrucksicher)
- Wärmedämmung von Schacht/Abluftleitung
- Abluftabfuhr ausschließlich über Dach
- Abluftleitung ist gerade und lotrecht auszuführen
- Querschnittsänderungen sind nicht zulässig
- Einzellüftungsgeräte müssen mit Rückschlagklappen ausgerüstet werden
- Reinigungsoffnung am unteren Ende der Abluftleitung
- Brandschutzanforderungen nach Landesbauordnung

Der Querschnitt der Abluftleitung muss so dimensioniert werden, dass die Summe der Volumenströme aller Einzelgeräte aufgenommen und der statische Druckabfall vom untersten Lüftungsgerät überwunden werden kann.

Planmäßiger Abluftvolumenstrom \(q_{V,Ab} \) nach DIN 18017-3

<table>
<thead>
<tr>
<th>Raumtyp</th>
<th>Abluftvolumenstrom (q_{V,Ab})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Küche</td>
<td>60</td>
</tr>
<tr>
<td>Bad</td>
<td>60</td>
</tr>
<tr>
<td>DU/WC</td>
<td>60</td>
</tr>
<tr>
<td>Dusche</td>
<td>60</td>
</tr>
<tr>
<td>WC</td>
<td>30</td>
</tr>
</tbody>
</table>

Infiltrationsvolumenstrom \(q_{V,Inf} \)

<table>
<thead>
<tr>
<th>Wohnfläche in m²</th>
<th>30</th>
<th>50</th>
<th>70</th>
<th>90</th>
<th>110</th>
<th>130</th>
<th>150</th>
<th>170</th>
<th>190</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einfamilienhaus</td>
<td>18</td>
<td>29</td>
<td>41</td>
<td>53</td>
<td>65</td>
<td>77</td>
<td>88</td>
<td>100</td>
<td>112</td>
</tr>
<tr>
<td>Mehrfamilienhaus (Abluft über Außenwand)</td>
<td>15</td>
<td>26</td>
<td>36</td>
<td>46</td>
<td>57</td>
<td>67</td>
<td>77</td>
<td>88</td>
<td>98</td>
</tr>
<tr>
<td>Mehrfamilienhaus (Zentraler Abluftschacht)</td>
<td>14</td>
<td>24</td>
<td>33</td>
<td>43</td>
<td>53</td>
<td>62</td>
<td>72</td>
<td>81</td>
<td>91</td>
</tr>
</tbody>
</table>

Volumenstrom-Außenwanddurchlass \(q_{V,ALD} \)

<table>
<thead>
<tr>
<th>Filterklasse</th>
<th>G2</th>
<th>G3 (Standard)</th>
<th>F5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ ALD 160</td>
<td>29</td>
<td>22</td>
<td>20</td>
</tr>
</tbody>
</table>

Normgerechte Lüftung

LA 60

Das Gerät ist für eine Installation im Schacht geeignet. Über eine separate Außenwanddurchführung besteht auch die Möglichkeit, das Abluftgerät in der Außenwand zu installieren.

LA 60 Trend

LA 60 Plus

Beispiel zur kontrollierten Belüftung einer Wohneinheit eines Mehrfamilienhauses mit dezentralen Einzelraumlüftungsgeräten

1 Wohnen/Essen Zuluft G3 LWE 40
2 Küche Abluft G5 LA 50
3 Bad/Dusche Abluft G7 ZLA 30 M18
5 Schlafen/Eltern Zuluft G9 ZLWE 40-4
6 Kind Zuluft
11 Flur/Treppe/Windfang durchströmt
G1 LWE 40
G2 LWE 40

www.stiebel-eltron.de Planungshandbuch Lüftung | 223
Lüftung mit dezentraler Zu- und Abluft

Planungsbeispiel 1

Elektrischer Anschluss

Bl schwarz
BU blau
GY grau
RD rot
VT violett
W1 Schalterwippe 1
W2 Schalterwippe 2
G1 LWE 40
G2 LWE 40
G3 LWE 40
G5 LA 50
G9 ZLWE 40-4
Beispiel zur kontrollierten Belüftung einer Wohneinheit eines Mehrfamilienhauses mit dezentralen Einzelraumlüftungsgeräten

Planungsbeispiel 2

<table>
<thead>
<tr>
<th>Wohnen/Essen</th>
<th>Küch</th>
<th>Bad/Dusche</th>
<th>Schlafen/Eltern</th>
<th>Kind</th>
<th>Flur/Treppe/Windfang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuluft</td>
<td>Abluft</td>
<td>Abluft</td>
<td>Zuluft</td>
<td>Zuluft</td>
<td>durchströmt</td>
</tr>
</tbody>
</table>

G1 LWE 40
G2 LWE 40
G3 LWE 40
G4 LWE 40
G5 LA 60 Plus
G7 Bauseitiger Schalter
Lüftung mit dezentraler Zu- und Abluft
Planungsbeispiel 2

Elektrischer Anschluss

<table>
<thead>
<tr>
<th>L</th>
<th>LWE 40</th>
<th>LWE 40</th>
<th>LWE 40</th>
<th>LA 60 Plus</th>
<th>ZLWE 40-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BL schwarz
BU blau
GY grau
RD rot
VT violett
S1 Schalterwippe 1

D000064 2027
Beispiel zur kontrollierten Belüftung einer Wohneinheit eines Mehrfamilienhauses mit dezentralen Einzelraumlüftungsgeräten

Um einen möglichst guten Wärmerückgewinnungsgrad zu erzielen, werden die LWE 40 im Bereich „Wohnen“ und „Schlafen“ im Pendelbetrieb betrieben. Das LA 60 Trend wird standardmäßig in der Grundlast betrieben. Mit Hilfe eines bauseitigen Schalters oder bei der Kopplung mit einem Lichtschalter kann das LA 60 Trend bei Bedarf in die Volllast versetzt werden. Über das integrierte Zeitrelais kann eine Einschaltverzögerung von 0,05 sec – 2,5 min und eine Nachlaufzeit von 3 min – 30 min eingestellt werden.
Lüftung mit dezentraler Zu- und Abluft
Planungsbeispiel 3

Elektrischer Anschluss

1 Wohnen/Essen Zuluft G2 LWE 40
2 Küche Abluft G5 LA 60 Trend
3 Bad/Dusche Abluft G10 ZLWE 40-2
5 Schlafen/Eltern Zuluft G1 LWE 40
6 Kind Zuluft
11 Flur/Treppe/Windfang durchströmt
Beispiel zur kontrollierten Belüftung einer Wohneinheit eines Mehrfamilienhauses mit dezentralen Einzelraumlüftungsgeräten

Um einen möglichst guten Wärmerückgewinnungsgrad zu erzielen, werden die LWE 40 im Bereich „Wohnen“, „Schlafen“, „Büro“ und „Kind“ im Pendelbetrieb betrieben.

Das LA 50 sorgt für einen entsprechenden Abtransport der feuchten Luft. In der ZLA 30 M18 ist ein Feuchtesensor integriert, welche bedarfsgeführt für einen ausreichenden Abluftbetrieb sorgt.

Um die Anlagenkosten zu verringern, könnte man die LWE 40 im Bereich „Schlafen“ und „Kind“ durch Außenluftdurchlässe (ALDs) ersetzen.
Lüftung mit dezentraler Zu- und Abluft
Planungsbeispiel 4

Elektrischer Anschluss

BL schwarz S1 Schalterwippe 1
BU blau S2 Schalterwippe 2
GY grau G1 LWE 40
RD rot G2 LWE 40
VT violett G3 LWE 40

230 | Planungshandbuch Lüftung www.stiebel-eltron.de
Lüftung mit Warmwasser-Wärmepumpe
LWA 100

Arbeitsweise
Technische Daten

<table>
<thead>
<tr>
<th>LWA 100 221470</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärmeleistungen</td>
</tr>
<tr>
<td>Heizleistung elektr. Nacherwärmung Warmwasser</td>
</tr>
<tr>
<td>Heizleistung Wärmepumpe L20/F58/W45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungsaufnahmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungsaufnahme Not-/Zusatzheizung</td>
</tr>
<tr>
<td>Nennleistungsaufnahme bei L20/F58/W45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungszahlen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungszahl nach EN 255</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schallangaben</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schalleistungspegel (EN 12102)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Einsatzgrenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warmwasser-Temperatur mit Wärmepumpe</td>
</tr>
<tr>
<td>Zulässiger Betriebsüberdruck Warmwasser</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hydraulische Daten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speichervolumen</td>
</tr>
<tr>
<td>Max. Warmwasser-Temperatur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elektrische Daten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungsaufnahme Lüftung min.</td>
</tr>
<tr>
<td>Nennspannung</td>
</tr>
<tr>
<td>Absicherung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phasen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/N/PE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungsaufnahme Lüftung max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungsaufnahme Lüftung LWA 100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausführungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filterklasse</td>
</tr>
<tr>
<td>Schutzart (IP)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kältemittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Füllmenge Kältemittel</td>
</tr>
<tr>
<td>CO₂-Equivalent (CO₂e)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treibhauspotenzial des Kältemittels (GWP100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
</tr>
<tr>
<td>Breite</td>
</tr>
<tr>
<td>Tiefe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gewichte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewicht leer</td>
</tr>
<tr>
<td>Gewicht gefüllt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anschlüsse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warmwasser Auslauf</td>
</tr>
<tr>
<td>Kondensatanschluss</td>
</tr>
<tr>
<td>Fortluft / Abluftanschluss</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaltwasser Zulauf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abluft-Volumenstrom Lüftung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abluft-Volumenstrom min. bei Wärmepumpenbetrieb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Einsatzbereich Abluft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufheizdauer WW mit WP von 15 °C auf 55 °C (L20/F40)</td>
</tr>
<tr>
<td>COP (t)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verfügbare externe Pressung Lüftung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zulässiger Betriebsdruck Kältekreis</td>
</tr>
<tr>
<td>Hausgröße Neubau m²</td>
</tr>
<tr>
<td>Hausgröße Modernisierung m²</td>
</tr>
</tbody>
</table>
Mischwassermenge

Die Mischwassermenge bezieht sich auf eine Kaltwassereintrittstemperatur von 10 °C, eine Zapftemperatur von 40 °C und eine Zapfrate von 10 l/min.
Lüftung mit Warmwasser-Wärmepumpe
LWA 100

Mindestabstände ohne Verkleidung

Mindestabstände mit Verkleidung

Verkleidungs-Formteile für den Lüftungsanschluss
Planungshinweise

Bedingungen am Aufstellort
Der Raum, in dem das Gerät installiert werden soll, muss folgende Bedingungen erfüllen:

- Frostfrei
- Tragfähige Wand
- Die Grundfläche und das Volumen des Aufstellraumes müssen den spezifischen Vorgaben für dieses Gerät entsprechen.
- Das Gerät darf nicht in Räumen betrieben werden, die durch Gas, Staub oder Dämpfe explosionsgefährdet sind.
- Bei Aufstellung des Lüftungsgerätes in einem Heizungsraum muss sichergestellt werden, dass der Betrieb des Heizgerätes nicht beeinträchtigt wird.

Um kurze Luftkanalwege zu erreichen, sollte das Gerät möglichst zentral eingeplant werden.

Elektroanschluss
Die werkseitig montierte dreidrige Anschlussleitung kann als Zuleitung für einen Festanschluss genutzt werden.

Luftanschluss
Die Luftanschlüsse zur Ab- und Fortluft befinden sich oben am Gerät. Die Fortluftleitung muss dampfdiffusionsdicht gedämmt werden. Wenn die Fortluft durch mehrere Brandschutzabschnitte geführt wird, müssen geeignete Brandschutzklappen eingesetzt werden.

Kondensatablauf
Um das Kondenswasser abzuleiten, ist eine Abflussleitung erforderlich. Auf Frostbeständigkeit ist zu achten!

Anschluss an das Lüftungssystem
Der Anschluss an die Luftleitungstrasse muss mit flexiblen Rohren, zum Beispiel Aluminium-Flexrohr, ausgeführt werden. Dies gewährleistet eine geringe Schallübertragung und eine einfache Montage.

Installation ohne Abluft-Rohrsystem
Eine besonders Kosten sparende Installation ist immer dann gegeben, wenn das Gerät direkt im Feuchtraum installiert wird und keine Rohre für die Luftführung der Abluft benötigt werden. Bei dieser Installationsart werden die beiden mitgelieferten EPS-Formteile zwischen Decke und Gerät montiert.

Installation im Geschosswohnungsbau
Im Geschosswohnungsbau können mehrere Geräte an einen gemeinsamen Fortluftschacht angeschlossen werden. Eine Rück­schlagklappe ist bereits in den Fortluftstutzen eingebaut.
Lüftung mit Warmwasser-Wärmepumpe
LWA 100

Bedienung und Regelung

Mit dem Drehknopf wird die gewünschte Warmwassertemperatur bedarfsgerecht und stufenlos eingestellt. Der Betrieb von Lüfter und Wärmepumpe wird mit zwei Leuchten angezeigt.

1 3-stufiger Drehschalter für die Lüfterstufen

Einstellen der Luftvolumenströme zu den Lüfterstufen „Nennlüftung“ und „Bedarfslüftung“ (optional)

<table>
<thead>
<tr>
<th>Stufe</th>
<th>Luftvolumenstrom m³/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>110</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
</tr>
</tbody>
</table>

Ordnen Sie bei Bedarf mit den Schiebeschaltern S3 und S4 den Lüfterstufen eine neue Volumenstromstufe zu. Die Schiebeschalter S3 und S4 befinden sich auf der Platine A3.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>unabhängig von der Stellung der Schiebeschalter S3 und S4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>S3</td>
<td>S4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>S3</td>
<td>S4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>S3</td>
<td>S4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>S4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lüftung mit Warmwasser-Wärmepumpe
LWA 100

Isometrie

1 Fortluftgitter
2 Fortluft
3 Flexibler Anschluss
4 Schalldämpfer
5 Abluft
Lüftung mit Warmwasser-Wärmepumpe
LWA 100

Elektrischer Anschluss

1 Lüftungsgerät
2 Netzanschluss, Haushaltstarifzähler
3 Differenzdruckschalter Feuerstätte
4 Druckanschluss „Ofen“
5 Druckanschluss „Raum“
6 Abgas-Temperaturfühler

Klemme X2
1 - 2 Lüfter Dauerlauf
2 - 3 Lüfter verdichterabhängig
Lüftung mit Warmwasser-Wärmepumpe
LWA 100 Zubehör

FMS LWA 100

HochleistungsfILTER-Medium aus bruchsicheren Polyesterfasern mit teilweise progressivem Aufbau, thermisch gebunden, temperaturbeständig bis 100 °C.

<table>
<thead>
<tr>
<th>FMS LWA 100</th>
<th>221398</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anwendung</td>
<td>Lüftungsgeräte</td>
</tr>
<tr>
<td>Filterklasse</td>
<td>G2</td>
</tr>
<tr>
<td>Filterklasse</td>
<td>ISO Coarse > 30 % (G2)</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td>165</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td>260</td>
</tr>
<tr>
<td>Anzahl</td>
<td>5</td>
</tr>
</tbody>
</table>
Installation

□ Der frostfreie Aufstellungsort ist festgelegt.
□ Fläche, Volumen und Raumhöhe des Aufstellungsraumes entsprechen den technischen Vorgaben des Gerätes inklusive montierter Luftleitungen und sonstigem Zubehör.
□ Die Installationswand ist für das Gerätegewicht geeignet.
□ Eine Körperschall-Übertragung auf das Gebäude ist weitgehend ausgeschlossen.
□ Der elektrische Anschluss ist entsprechend vorgesehen.
□ Das Kondenswasser wird mit natürlichem Gefälle in den bestehenden Abfluss in der Nähe des Gerätes eingeleitet.
□ Das Kondenswasser wird mit einer zusätzlichen Kondensatpumpe abgeleitet. Die Kondensatpumpe ist für die Leitungsänge und Förderhöhe geeignet.

Warmwasser

□ Der Warmwasserbedarf wird durch das Gerät abgedeckt.

Lüftung - allgemein

□ Der Luftvolumenstrom ist für jeden Raum festgelegt.
□ Das zu belüftende Gesamt-Raumvolumen entspricht den Mindest- und Maximalvorgaben des Gerätes.
□ Die Luftmenge pro Ventil wurde definiert.
□ Der Gesamt-Luftwechsel des Gebäudes liegt zwischen 0,4 und 0,6-fach.
□ Die Strömungsgeschwindigkeit im Abluftsystem ist < 3 m/s.

Luftleitungsstrasse

□ Die Luftleitungsstrasse und die Luftleistungsdurchmesser sind definiert. Auf eine möglichst einfach zu realisierende bauseitige Verlegung wurde geachtet.
□ Der Fortluftanschluss durch die Gebäudehülle ist einfach zu realisieren und übersteigt nicht die maximal zulässige Luftleitungslänge.
□ Bei der Positionierung der Abluftventile wurde auf die optimale Raumdurchströmung bei einer geringen Strömungs geschwindigkeit geachtet.
□ Das Küchen-Abluftventil ist nicht in unmittelbarer Nähe der Dunstabzugshaube positioniert.
□ Die Überströmöffnungen sind für den geplanten Luftvolumenstrom ausreichend groß und im Gebäudeplan definiert.

Dezentrale Zuluft

□ Die Fortluftleitung ist schwitzwassergedämmt.
□ Die Abluftleitung, die durch unbeheizte Räume führt, ist ausreichend wärmegedämmt.
□ Der Typ und die Position eines ausreichend dimensionierten Schalldämpfers für die Abluft sind definiert.
□ Typ und Position der dezentralen Zuluftventile sind im Bauplan definiert.

Kachel- und Kaminöfen

□ Kachel- oder Kaminofen wird raumluftunabhängig betrieben.
□ Kabel wurde vom Kachel- oder Kaminofen zum Lüftungsgerät verlegt, um bei Bedarf eine geeignete Sicherheitseinrichtung anzuschließen.
□ Der raumluftabhängige Kachel- oder Kaminofen ist mit einer Sicherheitseinrichtung ausgestattet, mit separater Verbrennungsluftversorgung versehen und mit der Lüftungsanlage elektrisch verbunden.
□ Freigabe vom Schornsteinfeger liegt vor.
□ Beim Betrieb eines Kaminofens wird der maximale Unterdruck von 4 Pa eingehalten.

Arbeitsweise

Weiteres Zubehör

170328 Fernbedienung RC 1
Technische Daten

<table>
<thead>
<tr>
<th></th>
<th>LWA 252</th>
<th>LWA 252 SOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärmeleistungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heizleistung Wärmepumpe L20/F58/W45</td>
<td>kW</td>
<td>1,4</td>
</tr>
<tr>
<td>Leistungsaufnahmen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leistungsaufnahme Not-/Zusatzheizung</td>
<td>kW</td>
<td>1,5</td>
</tr>
<tr>
<td>Leistungsaufnahme Lüfter bei 250 m³/h / 200 Pa</td>
<td>W</td>
<td>50</td>
</tr>
<tr>
<td>Nennleistungsaufnahme bei L20/F58/W45</td>
<td>kW</td>
<td>0,43</td>
</tr>
<tr>
<td>Leistungszahlen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leistungszahl nach EN 255</td>
<td></td>
<td>4,2</td>
</tr>
<tr>
<td>Schallangaben</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schalleistungspegel (EN 12102)</td>
<td>dB(A)</td>
<td>45</td>
</tr>
<tr>
<td>Einsatzgrenzen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zulässiger Betriebsüberdruck Warmwasser</td>
<td>MPa</td>
<td>0,6</td>
</tr>
<tr>
<td>Warmwasser-Temperatur mit Wärmepumpe</td>
<td>°C</td>
<td>60</td>
</tr>
<tr>
<td>Einsatzgrenze Wärmequelle min.</td>
<td>°C</td>
<td>15</td>
</tr>
<tr>
<td>Einsatzgrenze Wärmequelle max.</td>
<td>°C</td>
<td>30</td>
</tr>
<tr>
<td>Aufstellraum Grundfläche</td>
<td>m²</td>
<td>3</td>
</tr>
<tr>
<td>Aufstellraum Volumen min.</td>
<td>m³</td>
<td>6</td>
</tr>
<tr>
<td>Leitfähigkeit Trinkwasser min./max.</td>
<td>µS/cm</td>
<td>100-1500</td>
</tr>
<tr>
<td>Hydraulische Daten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Warmwasser-Temperatur</td>
<td>°C</td>
<td>70</td>
</tr>
<tr>
<td>Speichervolumen</td>
<td>l</td>
<td>303</td>
</tr>
<tr>
<td>Energetische Daten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nennleistung</td>
<td>W</td>
<td>150</td>
</tr>
<tr>
<td>Energieeffizienzklasse</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Elektrische Daten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nennspannung</td>
<td>V</td>
<td>230</td>
</tr>
<tr>
<td>Absicherung</td>
<td>A</td>
<td>C 16</td>
</tr>
<tr>
<td>Phasen</td>
<td>1/N/PE</td>
<td>1/N/PE</td>
</tr>
<tr>
<td>Anlaufstrom</td>
<td>A</td>
<td>10</td>
</tr>
<tr>
<td>Frequenz</td>
<td>Hz</td>
<td>50</td>
</tr>
<tr>
<td>Ausführungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schutzart (IP)</td>
<td>A</td>
<td>IP20</td>
</tr>
<tr>
<td>Kaltemittel</td>
<td>Kg</td>
<td>R134a</td>
</tr>
<tr>
<td>Füllmenge Kaltemittel</td>
<td>kg</td>
<td>0,85</td>
</tr>
<tr>
<td>CO₂-Equivalent (CO₂e)</td>
<td>l</td>
<td>1,22</td>
</tr>
<tr>
<td>Treibhauspotenzial des Kaltemittels (GWP100)</td>
<td>l</td>
<td>1430</td>
</tr>
<tr>
<td>Dimensionen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
<td>1860</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
<td>696</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
<td>735</td>
</tr>
<tr>
<td>Kippmaß</td>
<td>mm</td>
<td>1985</td>
</tr>
<tr>
<td>Gewichte</td>
<td>kg</td>
<td>453</td>
</tr>
<tr>
<td>Gewicht leer</td>
<td>kg</td>
<td>150</td>
</tr>
<tr>
<td>Gewicht gefüllt</td>
<td>kg</td>
<td>453</td>
</tr>
<tr>
<td>Anschlüsse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anschluss Warmwasser</td>
<td>G 1</td>
<td>G 1</td>
</tr>
<tr>
<td>Anschluss Kaltwasser</td>
<td>G 1</td>
<td>G 1</td>
</tr>
<tr>
<td>Zirkulationsanschluss</td>
<td>G 1/2</td>
<td>G 1/2</td>
</tr>
<tr>
<td>Anschluss Wärmeübertrager</td>
<td>G 1</td>
<td>G 1</td>
</tr>
<tr>
<td>Kondensatanschluss</td>
<td>mm</td>
<td>22</td>
</tr>
<tr>
<td>Werte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aufheizdauer WW mit WP von 25 °C auf 55 °C (L20/F40)</td>
<td>h</td>
<td>10,1</td>
</tr>
<tr>
<td>COP (t)</td>
<td>Kg</td>
<td>4,2</td>
</tr>
<tr>
<td>Zulässiger Betriebsdruck Kaltekreis</td>
<td>MPa</td>
<td>2,34</td>
</tr>
<tr>
<td>Abluft-Volumenstrom Lüftung</td>
<td>m³/h</td>
<td>80-400</td>
</tr>
<tr>
<td>Abluft-Volumenstrom min. bei Wärmepumpenbetrieb</td>
<td>m³/h</td>
<td>125</td>
</tr>
<tr>
<td>Verfügbare externe Pressung Lüftung</td>
<td>Pa</td>
<td>200</td>
</tr>
</tbody>
</table>
Lüftung mit Warmwasser-Wärmepumpe
LWA 252

<table>
<thead>
<tr>
<th>Funktionen Lüftung</th>
<th>Lüften und Warmwasser</th>
<th>Lüften und Warmwasser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funktion Heizen</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Funktion Kühlen</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Funktion Warmwasser</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Funktion Solar</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>Einsatzbereich Modernisierung</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Einsatzbereich Neubau</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Hausgröße Neubau</td>
<td>m² <240</td>
<td>>240</td>
</tr>
<tr>
<td>Hausgröße Modernisierung</td>
<td>m² <240</td>
<td>>240</td>
</tr>
</tbody>
</table>

Lüfterkennlinie

Mischwassermenge

Die Mischwassermenge bezieht sich auf eine Kaltwassereintrittstemperatur von 10 °C, eine Zapftemperatur von 40 °C und eine Zapfrate von 10 l/min.
Lüftung mit Warmwasser-Wärmepumpe

LWA 252

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
<th>Eingang / Ausgang</th>
<th>Größe / Nennweite</th>
</tr>
</thead>
<tbody>
<tr>
<td>c01</td>
<td>Kaltwasser Zulauf</td>
<td>Außengewinde</td>
<td>G 1</td>
</tr>
<tr>
<td>c06</td>
<td>Warmwasser Auslauf</td>
<td>Außengewinde</td>
<td>G 1</td>
</tr>
<tr>
<td>c10</td>
<td>Zirkulation</td>
<td>Außengewinde</td>
<td>G 1/2</td>
</tr>
<tr>
<td>d45</td>
<td>Kondensatablauf</td>
<td>Durchmesser</td>
<td>22 mm</td>
</tr>
<tr>
<td>g04</td>
<td>Fortluft</td>
<td>Nennweite</td>
<td>DN 160</td>
</tr>
<tr>
<td>g05</td>
<td>Abluft</td>
<td>Nennweite</td>
<td>DN 160</td>
</tr>
<tr>
<td>g29</td>
<td>Fortluft opt.</td>
<td>Nennweite</td>
<td>DN 160</td>
</tr>
</tbody>
</table>
Lüftung mit Warmwasser-Wärmepumpe

LWA 252 SOL

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bestimmung</th>
<th>Nennweite</th>
<th>Masse</th>
</tr>
</thead>
<tbody>
<tr>
<td>b01</td>
<td>Durchführung elektr. Leitungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c01</td>
<td>Kaltwasser Zulauf</td>
<td>Außengewinde</td>
<td>G 1</td>
</tr>
<tr>
<td>c06</td>
<td>Warmwasser Auslauf</td>
<td>Außengewinde</td>
<td>G 1</td>
</tr>
<tr>
<td>c10</td>
<td>Zirkulation</td>
<td>Außengewinde</td>
<td>G 1/2</td>
</tr>
<tr>
<td>d25</td>
<td>Solar Vorlauf</td>
<td>Außengewinde</td>
<td>G 1</td>
</tr>
<tr>
<td>d26</td>
<td>Solar Rücklauf</td>
<td>Außengewinde</td>
<td>G 1</td>
</tr>
<tr>
<td>d45</td>
<td>Kondensatablauf</td>
<td>Durchmesser</td>
<td>22</td>
</tr>
<tr>
<td>g04</td>
<td>Fortluft</td>
<td>Nennweite</td>
<td>DN 160</td>
</tr>
<tr>
<td>g05</td>
<td>Abluft</td>
<td>Nennweite</td>
<td>DN 160</td>
</tr>
<tr>
<td>g29</td>
<td>Fortluft opt.</td>
<td>Nennweite</td>
<td>DN 160</td>
</tr>
</tbody>
</table>
Lüftung mit Warmwasser-Wärmepumpe
LWA 252

Mindestabstände

≥500
≥50
≥100
≥660
Planungshinweise

Bedingungen am Aufstellort

Der Raum, in dem das Gerät installiert werden soll, muss folgende Bedingungen erfüllen:

- Frostfrei.
- Tragfähiger Fußboden.
- Das Gerät darf nicht in Räumen betrieben werden, die durch Gas, Staub oder Dämpfe explosionsgefährdet sind.
- Die Grundfläche und das Volumen des Aufstellraumes müssen den spezifischen Vorgaben für dieses Gerät entsprechen.
- Die in der Maßzeichnung angegebenen Abstände zu angrenzenden Decken und Wänden müssen eingehalten werden.
- Bei Aufstellung des Lüftungsgerätes in einem Heizungsraum muss sichergestellt werden, dass der Betrieb des Heizgerätes nicht beeinträchtigt wird.

Solar-Kollektoren

Luftanschluss

Der Anschluss der Fortluft kann wahlweise oben oder seitlich erfolgen.

Kondensatablauf

Um das Kondenswasser abzuleiten, muss eine frostfrei verlegte Abflussleitung vorhanden sein.

Anschluss an das Lüftungssystem

Der Anschluss an die Luftleitungstrasse muss mit flexiblen Rohren, zum Beispiel Aluminium-Flexrohr, ausgeführt werden. Dies gewährleistet eine geringe Schallübertragung und eine einfache Montage.

Abluftventilator

Basierend auf dem geplanten Volumenstrom muss bei der Inbe triebnahme der Abluftventilator eingestellt werden.

Die Einstellung erfolgt über die dritte Bedienenebene der Regelung und kann spezifisch für alle drei Stufen eingestellt werden. Im Verdichterbetrieb schaltet der Lüfter automatisch auf den Mindest-Volumenstrom. Um einen möglichst niedrigen Stromverbrauch der Lüfter zu erzielen, muss das Rohrnetz möglichst kurz sein und entsprechend der Anlagenplanung dimensioniert werden.

Nachtkühlung

Für die optionale Nachtkühlung muss die Fernbedienung RC1 sowie der Außentemperaturfühler AFS2 eingeplant werden.
Lüftung mit Warmwasser-Wärmepumpe

LWA 252

Isometrie

1 Flexibler Anschluss
2 Fortluft
3 Fortluftgitter
4 Schalldämpfer
5 Abluft
Elektrischer Anschluss

1 Lüftungsgerät
2 Netzanschluss, Haushaltstarifzähler
3 Differenzdruckschalter Feuerstätte
4 Druckanschluss „Ofen“
5 Druckanschluss „Raum“
6 Abgas-Temperaturfühler

Fern Fernbedienung RC 1 (optional)
T(S) Kollektorfühler (nur SOL-Variante)
T(A) Außentemperaturfühler (optional)
SOL Solarpumpe (nur SOL-Variante)
PFC potenzialfreier Kontakt

1/ N/ PE 230V ~50Hz

Lüftung mit Warmwasser-Wärmepumpe
LWA 252
Fernbedienung RC 1

Fernbedienung mit Raumfühler. Zur Veränderung der Betriebsarten: dauernd Lüfterstufe 1, dauernd Lüfterstufe 3 und Programmbetrieb. Erforderliches Zubehör für die optionale Nachtkühlung.

<table>
<thead>
<tr>
<th>Fernbedienung RC 1</th>
<th>170328</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe mm</td>
<td>80</td>
</tr>
<tr>
<td>Breite mm</td>
<td>80</td>
</tr>
<tr>
<td>Tiefe mm</td>
<td>30</td>
</tr>
</tbody>
</table>

Außenfühler AFS 2

Außenfühler im witterungsbeständigen Aufputz-Gehäuse zur Montage an einer Nord- oder Nordost-Wand, ca. 2,5 m über dem Erdboden und 1 m seitlich von Fenstern und Türen. Der Außentemperaturfühler soll der Witterung frei und ungeschützt und zu keiner Zeit direkter Sonneneinstrahlung ausgesetzt sein. Erforderliches Zubehör für die optionale Nachtkühlung.

<table>
<thead>
<tr>
<th>Außenfühler AFS 2</th>
<th>165339</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kabellänge m</td>
<td>max. 30</td>
</tr>
</tbody>
</table>

Lüftung mit Warmwasser-Wärmepumpe

LWA 252 Zubehör
Installation

☐ Der frostfreie Aufstellungsort ist festgelegt.
☐ Fläche, Volumen und Raumhöhe des Aufstellungsräumes entsprechen den technischen Vorgaben des Gerätes inklusive montierter Luftleitungen und sonstigem Zubehör.
☐ Die zulässige Bodenbelastung ist höher als das Gewicht des gefüllten Gerätes.
☐ Eine Körperschall-Übertragung auf das Gebäude ist weitestgehend ausgeschlossen.
☐ Das Kondenswasser wird mit natürlichem Gefälle in den bestehenden Abfluss in der Nähe des Gerätes eingeleitet.
☐ Das Kondenswasser wird mit einer zusätzlichen Kondensatpumpe abgeleitet. Die Kondensatpumpe ist für die Leitungslänge und Förderhöhe geeignet.
☐ Die Position der Fernbedienung sowie die elektrische Verbindung zum Gerät sind definiert.

Warmwasser

☐ Der Warmwasserbedarf wird durch das Gerät abgedeckt.

Solar

☐ Das Gerät ist für den Betrieb mit einer thermischen Solaranlage geeignet.
☐ Die Anzahl der Kollektoren entspricht den Vorgaben für das Gerät.
☐ Die Solaranlage ist für das Gebäude entsprechend geplant worden.

Lüftung - allgemein

☐ Der Luftvolumenstrom ist für jeden Raum festgelegt.
☐ Das zu belüftende Gesamt-Raumvolumen entspricht den Mindest- und Maximalvorgaben des Gerätes.
☐ Die Luftmenge pro Ventil wurde definiert.
☐ Der Gesamt-Luftwechsel des Gebäudes liegt zwischen 0,4 und 0,6-fach.
☐ Die Strömungsgeschwindigkeit im Abluftsystem ist < 3 m/s.

Luftleitungstrasse

☐ Die Luftleitungstrasse und die Luftleitungsdurchmesser sind definiert. Auf eine möglichst einfach zu realisierende bauseitige Verlegung wurde geachtet.
☐ Der Fortluftanschluss durch die Gebäudehülle ist einfach zu realisieren und übersteigt nicht die maximal zulässige Luftleitungsänge.
☐ Bei der Positionierung der Abluftventile wurde auf die optimale Raum durchströmung bei einer geringen Strömungsgeschwindigkeit geachtet.
☐ Das Küchen-Abluftventil ist nicht in unmittelbarer Nähe der Dunstabzugshaube positioniert.
☐ Die Dunstabzugshaube ist mit einer selbsttätigen Rückschlagklappe ausgestattet oder ist eine Umluft-Dunstabzugshaube. Es erfolgt kein Eintrag von Außenluft durch die Dunstabzugshaube.
☐ Reinigungs- und Wartungsöffnungen für alle Luftleitungen sind definiert.
☐ Die Überströmöffnungen sind für den geplanten Luftvolumenstrom ausreichend groß und im Gebäudeplan definiert.

Dezentrale Zuluft

☐ Die Fortluftleitung ist schwitzwassergedämmt.
☐ Die Abluftleitung, die durch unbeheizte Räume führt, ist ausreichend wärmegedämmt.
☐ Der Typ und die Position eines ausreichend dimensionierten Schalldämpfers für die Abluft sind definiert.
☐ Typ und Positionen der dezentralen Zuluftventile sind im Bauplan definiert.

Kachel- und Kaminöfen

☐ Kachel- oder Kaminofen wird raumluftunabhängig betrieben.
☐ Kabel wurde vom Kachel- oder Kaminofen zum Lüftungsgerät verlegt, um bei Bedarf eine geeignete Sicherheitseinrichtung anzuschließen.
☐ Der raumluftabhängige Kachel- oder Kaminofen ist mit einer Sicherheitseinrichtung ausgestattet, mit separater Verbrennungsluftversorgung versehen und mit der Lüftungsanlage elektrisch verbunden.
☐ Freigabe vom Schornsteinfeger liegt vor.
☐ Beim Betrieb des Kaminofens wird der maximale Unterdruck von 4 Pa eingehalten.
Notizen
Zubehör
Zubehör

Dezentrale Zuluftventile für Wandaufbau

ALD 160

Zuluftventile für die dezentrale Luftzuführung aus Kunststoff mit Wetterschutzgitter, Winddrucksicherung und Filter. Manuell verschließbar für den Wandeinbau.

<table>
<thead>
<tr>
<th>ALD 160</th>
<th>189813</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luftmenge</td>
<td>m³/h</td>
</tr>
<tr>
<td>Anschlussdurchmesser</td>
<td>mm</td>
</tr>
<tr>
<td>Volumenstrom ohne Volumenstromblende mit Druckdifferenz 4 Pa / 8 Pa</td>
<td>m³/h</td>
</tr>
<tr>
<td>Volumenstrom mit Volumenstromblende (Ø 56 mm) und Druckdifferenz 4 Pa / 8 Pa</td>
<td>m³/h</td>
</tr>
<tr>
<td>Volumenstrom mit Volumenstromblende (Ø 70 mm) und Druckdifferenz 4 Pa / 8 Pa</td>
<td>m³/h</td>
</tr>
</tbody>
</table>

Montagerohr ALD

Montagerohr aus Kunststoff PPs für die Montage des Außenwandventils ALD, auf Mauerstärke kürzbar. Das Montagerohr ist auch bei größeren Wandstärken als 500 mm für LA 50 einsetzbar.

<table>
<thead>
<tr>
<th>Montagerohr ALD</th>
<th>189816</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
</tbody>
</table>
Dezentrale Zuluftventile

LWF ZVM 100

Zuluftventile für die Deckenmontage in zentrale Zuluftsysteme, Luftmenge einstellbar, mit Rohrstutzen.

<table>
<thead>
<tr>
<th>LWF ZVM 100</th>
<th>227918</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luftmenge</td>
<td>m³/h</td>
</tr>
<tr>
<td>Schalldruckpegel in 5 m Abstand im Freifeld</td>
<td>dB(A)</td>
</tr>
<tr>
<td>Anschlussdurchmesser</td>
<td>mm</td>
</tr>
</tbody>
</table>

LWF ZVM 125

Zuluftventile für die Deckenmontage in zentrale Zuluftsysteme, Luftmenge einstellbar, mit Rohrstutzen.

<table>
<thead>
<tr>
<th>LWF ZVM 125</th>
<th>230163</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anschlussdurchmesser</td>
<td>mm</td>
</tr>
</tbody>
</table>

Y Gesamt-Druckabfall [Pa]
X Volumenstrom [m³/h]
Z Spalt [mm]
Dezentrale Zuluftventile

Zuluftventile für die Wandmontage in zentrale Zuluftsysteme, Luftmenge einstellbar, mit Rohrstutzen.

<table>
<thead>
<tr>
<th>LWF ZVM WQ 100</th>
<th>Luftmenge</th>
<th>m³/h</th>
<th>Anschlussdurchmesser</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>229281</td>
<td>40</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Y Gesamt-Druckabfall [Pa]
X Volumenstrom [m³/h]
Z Anzahl geöffneter Lochreihen
Zubehör

Abluftventile für Wand- / Deckeneinbau

LWF AVM 100

Abluftventile für die Wand- oder Deckenmontage in zentrale Abluftsysteme, Luftmenge einstellbar, mit Rohrstutzen.

<table>
<thead>
<tr>
<th>LWF AVM 100</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Luftmenge</td>
<td>m³/h</td>
</tr>
<tr>
<td>Schalldruckpegel in 5 m Abstand im Freifeld</td>
<td>dB(A)</td>
</tr>
<tr>
<td>Anschlussdurchmesser</td>
<td>mm</td>
</tr>
<tr>
<td>227917</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

![Graph](image1.png)

- Y: Gesamt-Druckabfall [Pa]
- X: Volumenstrom [m³/h]
- Z: Spalt [mm]

LWF AVM 125

Abluftventile für die Wand- oder Deckenmontage in zentrale Abluftsysteme, Luftmenge einstellbar, mit Rohrstutzen.

<table>
<thead>
<tr>
<th>LWF AVM 125</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Luftmenge</td>
<td>m³/h</td>
</tr>
<tr>
<td>Schalldruckpegel in 5 m Abstand im Freifeld</td>
<td>dB(A)</td>
</tr>
<tr>
<td>Anschlussdurchmesser</td>
<td>mm</td>
</tr>
<tr>
<td>227924</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
</tr>
</tbody>
</table>

![Graph](image2.png)

- Y: Gesamt-Druckabfall [Pa]
- X: Volumenstrom [m³/h]
- Z: Spalt [mm]
Zubehör

Abluftventile für Wand-/Deckeneinbau

<table>
<thead>
<tr>
<th>FMS A 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Filtermattenset für Abluftventile besteht aus Filtermattenhaube und Federringe zur Montage auf Abluftventile. Es schützt vor der Verschmutzung der Luftleitungen.</td>
</tr>
<tr>
<td>FMS A 100</td>
</tr>
<tr>
<td>230960</td>
</tr>
<tr>
<td>Anwendung</td>
</tr>
<tr>
<td>Filterklasse</td>
</tr>
<tr>
<td>Filterklasse</td>
</tr>
<tr>
<td>Anzahl</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FMS A 125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Filtermattenset für Abluftventile besteht aus Filtermattenhaube und Federringe zur Montage auf Abluftventile. Es schützt vor der Verschmutzung der Luftleitungen.</td>
</tr>
<tr>
<td>FMS A 125</td>
</tr>
<tr>
<td>230961</td>
</tr>
<tr>
<td>Anwendung</td>
</tr>
<tr>
<td>Filterklasse</td>
</tr>
<tr>
<td>Filterklasse</td>
</tr>
<tr>
<td>Anzahl</td>
</tr>
</tbody>
</table>
Zubehör

Lüftungsgitter

Lüftungsgitter für die Außen- und Fortluftführung mit Rohran schlussstutzen aus Stahlblech. Mit festen Rasterlamellen, einbaubar in Wände.

<table>
<thead>
<tr>
<th>LWF LG 125</th>
<th>233017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Anschlussdurchmesser</td>
<td>mm</td>
</tr>
</tbody>
</table>

AWG 160 R

<table>
<thead>
<tr>
<th>AWG 160 R</th>
<th>234505</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe Einlassung für Wetterschutz gitter</td>
<td>mm</td>
</tr>
<tr>
<td>Breite Einlassung für Wetterschutz gitter</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe Einlassung für Wetterschutzgitter (mit eingesetztem Putzdeckel)</td>
<td>mm</td>
</tr>
<tr>
<td>Innendurchmesser Rohr</td>
<td>mm</td>
</tr>
<tr>
<td>Außendurchmesser Rohr</td>
<td>mm</td>
</tr>
<tr>
<td>Durchgangsöffnung min.</td>
<td>mm</td>
</tr>
<tr>
<td>Gewicht</td>
<td>kg</td>
</tr>
<tr>
<td>Wandstärke</td>
<td>mm</td>
</tr>
<tr>
<td>Max. Luftvolumenstrom</td>
<td>m³/h</td>
</tr>
<tr>
<td>Statische Druckdifferenz bei 350 m³/h ausströmend</td>
<td>Pa</td>
</tr>
<tr>
<td>Statische Druckdifferenz bei 350 m³/h einströmend</td>
<td>Pa</td>
</tr>
<tr>
<td>Kondensationsgrenze bei: Temperatur im Rohr / Temperatur um das Rohr / relative Feuchte um das Rohr</td>
<td>-20°C / 20°C / 60%</td>
</tr>
<tr>
<td>Material Wanddurchführung</td>
<td>EPS (grau)</td>
</tr>
<tr>
<td>Material Wetterschutzgitter</td>
<td>Lackiertes Stahlblech (silbergrau)</td>
</tr>
</tbody>
</table>
Zubehör

Lüftungsgitter

KWG 125

Kombiniertes Ansaug-/Ausblasgitter zur Montage auf die Außenwand für die Außen- und Fortluftführung für zentrale Lüftungsgeräte mit Wärmerückgewinnung, Anordnung Fortluft und Außenluft nebeneinander, Material Stahlblech verzinkt und pulverbeschichtet, Farbe silbergrau.

<table>
<thead>
<tr>
<th>Klassifikation</th>
<th>Anschlussdurchmesser (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KWG 125</td>
<td>125</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Klassifikation</th>
<th>Anschlussdurchmesser (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KWG 160</td>
<td>160</td>
</tr>
</tbody>
</table>

KWG 160

Kombiniertes Ansaug-/Ausblasgitter zur Montage auf die Außenwand für die Außen- und Fortluftführung für zentrale Lüftungsgeräte mit Wärmerückgewinnung, Anordnung Fortluft und Außenluft nebeneinander, Material Stahlblech verzinkt und pulverbeschichtet, Farbe silbergrau.
Zubehör

Fortluft-/Außenluftführungen über Dach

LWF DH 160

Dachdurchführung vorzugsweise für Fortluftführung mit Blechkragen zur Abdichtung und Aluminiumhaube als Regenschutz mit seitlicher Ausströmung. Geeignet für Schrägdächer von 10 bis 45°. Farbe anthrazit

<table>
<thead>
<tr>
<th>LWF DH 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>170016</td>
</tr>
<tr>
<td>Anschlussdurchmesser</td>
</tr>
<tr>
<td>Luftmenge</td>
</tr>
</tbody>
</table>

LWF LH 160 VA

<table>
<thead>
<tr>
<th>LWF LH 160 VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>227923</td>
</tr>
<tr>
<td>Höhe</td>
</tr>
<tr>
<td>Anschlussdurchmesser</td>
</tr>
</tbody>
</table>

LWF DE 160 30 - 45

Dacheindeckung aus Titanzink für Schrägdächer

<table>
<thead>
<tr>
<th>LWF DE 160 30 - 45</th>
</tr>
</thead>
<tbody>
<tr>
<td>227922</td>
</tr>
<tr>
<td>Breite</td>
</tr>
<tr>
<td>Anschlussdurchmesser</td>
</tr>
</tbody>
</table>

LWF DE 160 10 - 30

Dacheindeckung aus Titanzink für Schrägdächer

<table>
<thead>
<tr>
<th>LWF DE 160 10 - 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>227921</td>
</tr>
<tr>
<td>Breite</td>
</tr>
<tr>
<td>Anschlussdurchmesser</td>
</tr>
</tbody>
</table>
Zubehör
Fortluft-/Außenluftführungen über Dach

LWF 160-1-VA

Edelstahlrohr in polierter Ausführung für den Anschluss der Lamellenhaube, als Dachdurchführung oder Ansaugturm.

<table>
<thead>
<tr>
<th>LWF 160-1-VA</th>
<th>230962</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge</td>
<td>mm</td>
</tr>
<tr>
<td>Durchmesser</td>
<td>mm</td>
</tr>
</tbody>
</table>

LWF B 160 – 90 VA

Edelstahlrohrbogen für den Anschluss an das Edelstahlrohr mit Dichtung und Schrumpfmanchetten zur besonderen Abdichtung.

<table>
<thead>
<tr>
<th>LWF B 160 – 90 VA</th>
<th>230963</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchmesser</td>
<td>mm</td>
</tr>
</tbody>
</table>
Zubehör

Wickelfalzrohr-System

Wickelfalzrohr aus verzinktem Stahlblech nach DIN EN 1506.

<table>
<thead>
<tr>
<th>LWF 100 - 2</th>
<th>LWF 125 - 2</th>
<th>LWF 160 - 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge</td>
<td>mm</td>
<td>2000</td>
</tr>
<tr>
<td>Durchmesser</td>
<td>mm</td>
<td>100</td>
</tr>
<tr>
<td>Wanddicke</td>
<td>mm</td>
<td>0.6</td>
</tr>
<tr>
<td>Gewicht</td>
<td>kg</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Wickelfalzrohrformteile aus verzinktem Stahlblech mit Rollringdichtungssystem.

<table>
<thead>
<tr>
<th>LWF T 100 - 100</th>
<th>LWF T 125 - 100</th>
<th>LWF T 125 - 125</th>
<th>LWF T 160 - 125</th>
<th>LWF T 160 - 160</th>
<th>LWF T 180/180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montagelänge</td>
<td>mm</td>
<td>151</td>
<td>184</td>
<td>184</td>
<td>229</td>
</tr>
<tr>
<td>Durchmesser</td>
<td>mm</td>
<td>100</td>
<td>125</td>
<td>125</td>
<td>160</td>
</tr>
<tr>
<td>Durchmesser Abzweig</td>
<td>mm</td>
<td>100</td>
<td>100</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>Gewicht</td>
<td>kg</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Wickelfalzrohrformteile aus verzinktem Stahlblech mit Rollringdichtungssystem.

<table>
<thead>
<tr>
<th>LWF RS 125 - 100</th>
<th>LWF RS 160 - 125</th>
<th>LWF RS 180 - 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montagelänge</td>
<td>mm</td>
<td>62</td>
</tr>
<tr>
<td>Durchmesser</td>
<td>mm</td>
<td>125</td>
</tr>
<tr>
<td>Durchmesser Reduzierung</td>
<td>mm</td>
<td>100</td>
</tr>
<tr>
<td>Gewicht</td>
<td>kg</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Wickelfalzrohrformteile aus verzinktem Stahlblech mit Rollringdichtungssystem.

<table>
<thead>
<tr>
<th>LWF N 100</th>
<th>LWF N 125</th>
<th>LWF N 160</th>
<th>LWF N 180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montagelänge</td>
<td>mm</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Durchmesser</td>
<td>mm</td>
<td>100</td>
<td>125</td>
</tr>
<tr>
<td>Gewicht</td>
<td>kg</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Wickelfalzrohrformteile aus verzinktem Stahlblech mit Rollringdichtungssystem.

<table>
<thead>
<tr>
<th>LWF M 100</th>
<th>LWF M 125</th>
<th>LWF M 160</th>
<th>LWF M 180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge</td>
<td>mm</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Durchmesser</td>
<td>mm</td>
<td>100</td>
<td>125</td>
</tr>
<tr>
<td>Gewicht</td>
<td>kg</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Zubehör

Wickelfalzrohr-System

Wickelfalzrohrformteile aus verzinktem Stahlblech mit Rollringdichtungssystem.

<table>
<thead>
<tr>
<th>Typ</th>
<th>Durchmesser</th>
<th>Winkel des Bogens</th>
<th>Gewicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWF B 100 - 90</td>
<td>100</td>
<td>90</td>
<td>0,6</td>
</tr>
<tr>
<td>LWF B 125 - 90</td>
<td>125</td>
<td>90</td>
<td>0,8</td>
</tr>
<tr>
<td>LWF B 160 - 90</td>
<td>160</td>
<td>90</td>
<td>1,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typ</th>
<th>Durchmesser</th>
<th>Winkel des Bogens</th>
<th>Gewicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWF B 100 - 60</td>
<td>100</td>
<td>60</td>
<td>0,4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typ</th>
<th>Durchmesser</th>
<th>Winkel des Bogens</th>
<th>Gewicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWF B 100 - 45</td>
<td>100</td>
<td>45</td>
<td>0,4</td>
</tr>
<tr>
<td>LWF B 125 - 45</td>
<td>125</td>
<td>45</td>
<td>0,6</td>
</tr>
<tr>
<td>LWF B 160 - 45</td>
<td>160</td>
<td>45</td>
<td>0,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typ</th>
<th>Durchmesser</th>
<th>Winkel des Bogens</th>
<th>Gewicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWF B 100 - 30</td>
<td>100</td>
<td>30</td>
<td>0,3</td>
</tr>
<tr>
<td>LWF B 125 - 30</td>
<td>125</td>
<td>30</td>
<td>0,3</td>
</tr>
<tr>
<td>LWF B 160 - 30</td>
<td>160</td>
<td>30</td>
<td>0,6</td>
</tr>
</tbody>
</table>
Enddeckel

Wickelfalzrohrformteile aus verzinktem Stahlblech mit Rollringdichtungssystem.

<table>
<thead>
<tr>
<th></th>
<th>LWF ED 100</th>
<th>LWF ED 125</th>
<th>LWF ED 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge (mm)</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Durchmesser (mm)</td>
<td>100</td>
<td>125</td>
<td>160</td>
</tr>
<tr>
<td>Gewicht (kg)</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Enddeckel aus verzinktem Stahlblech nach DIN 24145 mit Rollringdichtung zum Verschließen von Rohren und Muffen

<table>
<thead>
<tr>
<th></th>
<th>LWF EDN 100</th>
<th>LWF EDN 125</th>
<th>LWF EDN 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchmesser (mm)</td>
<td>100</td>
<td>125</td>
<td>160</td>
</tr>
</tbody>
</table>
Zubehör
Flexible Rohre aus Aluminium

Flexibles Rohr aus Aluminium nach DIN 24146, doppellagig gewickelt. Zum Anschluss der Geräte an das Rohrnetz.

<table>
<thead>
<tr>
<th></th>
<th>LWF F 125 - 5</th>
<th>LWF F 160 - 5</th>
<th>LWF F 180 - 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
</tr>
<tr>
<td>Ausziehbar auf</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Durchmesser</td>
<td>125</td>
<td>160</td>
<td>180</td>
</tr>
<tr>
<td>Gewicht</td>
<td>1,7</td>
<td>2,1</td>
<td>2,2</td>
</tr>
</tbody>
</table>
Zubehör
Gedämmte Rohre

LWF DR 160-1
Wärmegedämmtes Rohr aus außen aluminiumkaschiertem PE-Schaum, wärme- und schallisolierend. Verbinder verzinktes Blech mit beidseitiger Lippendichtung aus EPDM.

<table>
<thead>
<tr>
<th>LWF DR 160-1</th>
<th>236910</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge</td>
<td>mm 1000</td>
</tr>
<tr>
<td>Durchmesser</td>
<td>mm 160</td>
</tr>
<tr>
<td>Wanddicke</td>
<td></td>
</tr>
</tbody>
</table>

LWF DRB 160-90
Wärmegedämmter Bogen aus außen aluminiumkaschiertem PE-Schaum, wärme- und schallisolierend. Verbinder verzinktes Blech mit beidseitiger Lippendichtung aus EPDM.

<table>
<thead>
<tr>
<th>LWF DRB 160-90</th>
<th>236911</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchmesser</td>
<td>mm 160</td>
</tr>
<tr>
<td>Winkel des Bogens</td>
<td>90</td>
</tr>
</tbody>
</table>

LWF DRB 160-45
Wärmegedämmter Bogen aus außen aluminiumkaschiertem PE-Schaum, wärme- und schallisolierend. Verbinder verzinktes Blech mit beidseitiger Lippendichtung aus EPDM.

<table>
<thead>
<tr>
<th>LWF DRB 160-45</th>
<th>236912</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchmesser</td>
<td>mm 160</td>
</tr>
<tr>
<td>Wanddicke</td>
<td>20</td>
</tr>
<tr>
<td>Winkel des Bogens</td>
<td>45</td>
</tr>
</tbody>
</table>

LWF DRF 160-0,5
Wärmegedämmtes flexibles Rohr aus außen aluminiumkaschiertem PE-Schaum, innen vlieskaschiert, wärme- und schallisolierend. Verbinder verzinktes Blech mit beidseitiger Lippendichtung aus EPDM.

<table>
<thead>
<tr>
<th>LWF DRF 160-0,5</th>
<th>236913</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge</td>
<td>mm 500</td>
</tr>
<tr>
<td>Durchmesser</td>
<td>mm 160</td>
</tr>
<tr>
<td>Wanddicke</td>
<td>20</td>
</tr>
</tbody>
</table>

LWF DRKB
Spezial-Klebeband aus alukaschiertem Folie zum Abkleben der Verbindungen des gedämmten Rohrsystems, dampfdiffusionsdicht.

<table>
<thead>
<tr>
<th>LWF DRKB</th>
<th>236914</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge</td>
<td>mm 5000</td>
</tr>
</tbody>
</table>

LWF DRN 160
Bundkragen-Steckverbinder aus verzinktem Stahlblech mit beidseitiger Lippendichtung aus EPDM. Geeignet für den Einsatz inner- und außerhalb von Gebäuden

<table>
<thead>
<tr>
<th>LWF DRN 160</th>
<th>236915</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge</td>
<td>mm 80</td>
</tr>
<tr>
<td>Durchmesser</td>
<td>mm 160</td>
</tr>
</tbody>
</table>
Zubehör
Gedämmte Rohre

LWF DR 125-1 EPP
Wärmegedämmtes Rohrsystem aus expandiertem Polypropylen (EPP), ein dampfdiffusionsdichtes, sehr leichtes und selbstragendes Material, zur Außen- und Fortluftführung. Das Rohrmaterial, zur Vermeidung von Kondensatbildung.

Länge (mm)	1000
Durchmesser (mm)	125
Wanddicke (mm)	15
Gewicht (kg)	2

LWF DR 160-1 EPP
Wärmegedämmtes Rohrsystem aus expandiertem Polypropylen (EPP), ein dampfdiffusionsdichtes, sehr leichtes und selbstragendes Material, zur Außen- und Fortluftführung. Das Rohrmaterial, zur Vermeidung von Kondensatbildung.

Länge (mm)	1000
Durchmesser (mm)	160
Gewicht (kg)	2

LWF DRB 125-90 EPP
Wärmegedämmtes Rohrsystem aus expandiertem Polypropylen (EPP), ein dampfdiffusionsdichtes, sehr leichtes und selbstragendes Material, zur Außen- und Fortluftführung. Das Rohrmaterial, zur Vermeidung von Kondensatbildung.

| Durchmesser (mm) | 125 |

LWF DRB 125-45 EPP
Wärmegedämmtes Rohrsystem aus expandiertem Polypropylen (EPP), ein dampfdiffusionsdichtes, sehr leichtes und selbstragendes Material, zur Außen- und Fortluftführung. Das Rohrmaterial, zur Vermeidung von Kondensatbildung.

| Durchmesser (mm) | 125 |

LWF DRB 160-90 EPP
Wärmegedämmtes Rohrsystem aus expandiertem Polypropylen (EPP), ein dampfdiffusionsdichtes, sehr leichtes und selbstragendes Material, zur Außen- und Fortluftführung. Das Rohrmaterial, zur Vermeidung von Kondensatbildung.

| Durchmesser (mm) | 160 |
Zubehör

Gedämmte Rohre

LWF DRB 160-45 EPP

Wärmegedämmtes Rohrsystem aus expandiertem Polypropylen (EPP), ein dampfdiffusionsdichtes, sehr leichtes und selbstragendes Material, zur Außen- und Fortluftführung. Das Rohrmaterial, zur Vermeidung von Kondensatbildung.

<table>
<thead>
<tr>
<th>LWF DRB 160-45 EPP</th>
<th>239236</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchmesser</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td>160</td>
</tr>
</tbody>
</table>

LWF DRM 125 EPP

Wärmegedämmtes Rohrsystem aus expandiertem Polypropylen (EPP), ein dampfdiffusionsdichtes, sehr leichtes und selbstragendes Material, zur Außen- und Fortluftführung. Das Rohrmaterial, zur Vermeidung von Kondensatbildung.

<table>
<thead>
<tr>
<th>LWF DRM 125 EPP</th>
<th>239237</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchmesser</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td>125</td>
</tr>
</tbody>
</table>

LWF DRM 160 EPP

Wärmegedämmtes Rohrsystem aus expandiertem Polypropylen (EPP), ein dampfdiffusionsdichtes, sehr leichtes und selbstragendes Material, zur Außen- und Fortluftführung. Das Rohrmaterial, zur Vermeidung von Kondensatbildung.

<table>
<thead>
<tr>
<th>LWF DRM 160 EPP</th>
<th>239238</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchmesser</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td>160</td>
</tr>
</tbody>
</table>
Zubehör
Schalldämpfer

Geräteschalldämpfer

Einfügungsdämpfung in Anlehnung an DIN EN ISO 7235

<table>
<thead>
<tr>
<th>Modell</th>
<th>63 Hz</th>
<th>125 Hz</th>
<th>250 Hz</th>
<th>500 Hz</th>
<th>1000 Hz</th>
<th>2000 Hz</th>
<th>4000 Hz</th>
<th>8000 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWF S 100 - 0,6</td>
<td>1,2</td>
<td>7,1</td>
<td>10,7</td>
<td>17,8</td>
<td>21,4</td>
<td>28,5</td>
<td>16,6</td>
<td>13,0</td>
</tr>
<tr>
<td>LWF S 125 - 0,6</td>
<td>1,2</td>
<td>7,0</td>
<td>10,7</td>
<td>16,5</td>
<td>27,2</td>
<td>21,3</td>
<td>16,5</td>
<td>11,8</td>
</tr>
<tr>
<td>LWF S 125 - 0,9</td>
<td>1,7</td>
<td>10,5</td>
<td>15,8</td>
<td>24,6</td>
<td>40,4</td>
<td>31,6</td>
<td>26,6</td>
<td>17,5</td>
</tr>
<tr>
<td>LWF S 160 - 0,6</td>
<td>1,2</td>
<td>4,8</td>
<td>7,2</td>
<td>14,4</td>
<td>24,0</td>
<td>26,4</td>
<td>16,8</td>
<td>12,0</td>
</tr>
<tr>
<td>LWF S 160 - 0,9</td>
<td>1,6</td>
<td>7,2</td>
<td>10,8</td>
<td>21,6</td>
<td>36,0</td>
<td>39,6</td>
<td>25,2</td>
<td>18,0</td>
</tr>
<tr>
<td>LWF SR 125 - 0,6</td>
<td>4,0</td>
<td>7,6</td>
<td>13,6</td>
<td>26,7</td>
<td>24,2</td>
<td>17,4</td>
<td>12,1</td>
<td></td>
</tr>
<tr>
<td>LWF SR 160 - 1</td>
<td>6,7</td>
<td>12,7</td>
<td>12,7</td>
<td>22,6</td>
<td>44,5</td>
<td>40,3</td>
<td>29,0</td>
<td>20,1</td>
</tr>
<tr>
<td>LWF SRW 160 - 1, gerade</td>
<td>8,3</td>
<td>16,5</td>
<td>23,8</td>
<td>39,7</td>
<td>37,9</td>
<td>37,3</td>
<td>35,2</td>
<td>29,8</td>
</tr>
<tr>
<td>LWF SRW 160 - 1, 90°</td>
<td>8,0</td>
<td>17,5</td>
<td>25,4</td>
<td>44,1</td>
<td>43,6</td>
<td>41,6</td>
<td>36,2</td>
<td>28,9</td>
</tr>
<tr>
<td>LWF S 180 - 0,9</td>
<td>1,8</td>
<td>6,3</td>
<td>9,9</td>
<td>18,9</td>
<td>33,3</td>
<td>35,1</td>
<td>23,4</td>
<td>18,0</td>
</tr>
<tr>
<td>LWF SF 100 - 1</td>
<td>-</td>
<td>3</td>
<td>7</td>
<td>15</td>
<td>37</td>
<td>68</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>LWF SF 125 - 1</td>
<td>-</td>
<td>5</td>
<td>8</td>
<td>16</td>
<td>31</td>
<td>51</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modell</th>
<th>Innendurchmesser</th>
<th>Außendurchmesser</th>
<th>Länge</th>
<th>Gewicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWF S 125 - 0,6</td>
<td>125 mm</td>
<td>224 mm</td>
<td>600 mm</td>
<td>4 kg</td>
</tr>
<tr>
<td>LWF S 125 - 0,9</td>
<td>125 mm</td>
<td>224 mm</td>
<td>600 mm</td>
<td>7 kg</td>
</tr>
<tr>
<td>LWF S 160 - 0,6</td>
<td>160 mm</td>
<td>280 mm</td>
<td>900 mm</td>
<td>6 kg</td>
</tr>
<tr>
<td>LWF S 160 - 0,9</td>
<td>160 mm</td>
<td>280 mm</td>
<td>900 mm</td>
<td>8 kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modell</th>
<th>Innendurchmesser</th>
<th>Außendurchmesser</th>
<th>Länge</th>
<th>Anzahl der Öffnungen</th>
<th>Verpackungseinheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWF SF 100 - 1</td>
<td>100 mm</td>
<td>160 mm</td>
<td>1000 mm</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>LWF SF 125 - 1</td>
<td>125 mm</td>
<td>190 mm</td>
<td>1000 mm</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Schalldämpferelement für den Einbau in Wickelfalzrohr DN 100 zur Luftschallreduzierung. Das Material besteht aus brand- und schimmelresistenten Schaumstoff. Durch die Anzahl der Durchströmungsoffnungen können der Volumenstrom und die Schalldämpfung variiert werden.

<table>
<thead>
<tr>
<th>Modell</th>
<th>Innendurchmesser</th>
<th>Außendurchmesser</th>
<th>Länge</th>
<th>Anzahl der Öffnungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWF SE 100</td>
<td>100 mm</td>
<td>100 mm</td>
<td>50</td>
<td>5</td>
</tr>
</tbody>
</table>

www.stiebel-eltron.de
Zubehör

Schalldämpfer

LWF SR 160 - 0,5

<table>
<thead>
<tr>
<th>LWF SR 160 - 0,5</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>233012</td>
<td></td>
</tr>
<tr>
<td>Innendurchmesser</td>
<td>mm</td>
</tr>
<tr>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>260</td>
<td></td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>330</td>
<td></td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
</tr>
<tr>
<td>600</td>
<td></td>
</tr>
</tbody>
</table>

LWF SR 160 - 1

<table>
<thead>
<tr>
<th>LWF SR 160 - 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>233013</td>
<td></td>
</tr>
<tr>
<td>Innendurchmesser</td>
<td>mm</td>
</tr>
<tr>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>330</td>
<td></td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>260</td>
<td></td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
</tr>
<tr>
<td>1100</td>
<td></td>
</tr>
</tbody>
</table>

LWF SRW 160 - 1

<table>
<thead>
<tr>
<th>LWF SRW 160 - 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>233014</td>
<td></td>
</tr>
<tr>
<td>Innendurchmesser</td>
<td>mm</td>
</tr>
<tr>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>370</td>
<td></td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
</tr>
<tr>
<td>1040</td>
<td></td>
</tr>
</tbody>
</table>
Zubehör

Flexibles Luftverteilsystem LVE

LVE RP 20

<table>
<thead>
<tr>
<th>Breite</th>
<th>mm</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
<td>52</td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
<td>20000</td>
</tr>
<tr>
<td>Beschreibung</td>
<td>Flacher, flexibler Kunststoffkanal, 20 m lang</td>
<td></td>
</tr>
</tbody>
</table>

LVE VT 4

<table>
<thead>
<tr>
<th>Breite</th>
<th>mm</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
<td>90</td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
<td>480</td>
</tr>
<tr>
<td>Beschreibung</td>
<td>Luftverteiler komplett</td>
<td></td>
</tr>
</tbody>
</table>

LVE VTA

Verteilerabdeckblech aus Edelstahl ist als Revisionsdeckel für den Zugang zum Luftverteiler vorgesehen. Es ist an die Fugenausrichtung ausrichtbar und kann mit Fliesen, Laminat, oder anderen Fußbodenbelägen verkleidet werden.

<table>
<thead>
<tr>
<th>Breite</th>
<th>mm</th>
<th>308</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiefe</td>
<td>mm</td>
<td>25</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
<td>6</td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
<td>308</td>
</tr>
<tr>
<td>Beschreibung</td>
<td>Verteilerabdeckblech</td>
<td></td>
</tr>
</tbody>
</table>

LVE VV

Zubehör für den Anschluss des Luftverteilers an den Steigstrang.

<table>
<thead>
<tr>
<th>Breite</th>
<th>mm</th>
<th>229</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
<td>57</td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
<td>100</td>
</tr>
<tr>
<td>Beschreibung</td>
<td>Verlängerung Verteileranschluss</td>
<td></td>
</tr>
</tbody>
</table>

LVE VAL 400

Zubehör für den Anschluss des Luftverteilers an den Steigstrang.

<table>
<thead>
<tr>
<th>Breite</th>
<th>mm</th>
<th>229</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
<td>57</td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
<td>400</td>
</tr>
<tr>
<td>Beschreibung</td>
<td>Verlängerung Verteileranschluss gerade</td>
<td></td>
</tr>
</tbody>
</table>
Zubehör Flexibles Luftverteilsystem LVE

LVE VAB 45

Zubehör für den Anschluss des Luftverteilers an den Steigstrang.

<table>
<thead>
<tr>
<th>LVE VAB 45</th>
<th>233031</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
</tr>
<tr>
<td>Beschreibung</td>
<td></td>
</tr>
</tbody>
</table>

LVE FA

<table>
<thead>
<tr>
<th>LVE FA</th>
<th>231125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
</tr>
<tr>
<td>Beschreibung</td>
<td></td>
</tr>
</tbody>
</table>

LVE WA

<table>
<thead>
<tr>
<th>LVE WA</th>
<th>231124</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
</tr>
<tr>
<td>Beschreibung</td>
<td></td>
</tr>
</tbody>
</table>

LVE WAV

Verlängerungsstück für den Wand- und Deckenauslass

<table>
<thead>
<tr>
<th>LVE WAV</th>
<th>233029</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
</tr>
<tr>
<td>Durchmesser</td>
<td>mm</td>
</tr>
<tr>
<td>Beschreibung</td>
<td></td>
</tr>
</tbody>
</table>

LVE WA 125 O

<table>
<thead>
<tr>
<th>LVE WA 125 O</th>
<th>239124</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
</tr>
<tr>
<td>Beschreibung</td>
<td></td>
</tr>
</tbody>
</table>
Zubehör

Flexibles Luftverteilungssystem LVE

LVE WA 125 U

<table>
<thead>
<tr>
<th>LVE WA 125 U</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
</tr>
<tr>
<td>Beschreibung</td>
<td>Wandauslass komplett</td>
</tr>
</tbody>
</table>

LVE BH 90

Formteil für das flache und flexible Luftverteilungssystem LVE aus Kunststoff.

<table>
<thead>
<tr>
<th>LVE BH 90</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
</tr>
<tr>
<td>Beschreibung</td>
<td>Bogen 90° komplett hoch</td>
</tr>
</tbody>
</table>

LVE BF 90

Formteil für das flache und flexible Luftverteilungssystem LVE aus Kunststoff.

<table>
<thead>
<tr>
<th>LVE BF 90</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
</tr>
<tr>
<td>Beschreibung</td>
<td>Bogen 90° komplett flach</td>
</tr>
</tbody>
</table>

LVE BF 45

Formteil für das flache und flexible Luftverteilungssystem LVE aus Kunststoff.

<table>
<thead>
<tr>
<th>LVE BF 45</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
</tr>
<tr>
<td>Beschreibung</td>
<td>Bogen 45° komplett flach</td>
</tr>
</tbody>
</table>

LVE Ü 180

Formteil für das flache und flexible Luftverteilungssystem LVE aus Kunststoff.

<table>
<thead>
<tr>
<th>LVE Ü 180</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
</tr>
<tr>
<td>Beschreibung</td>
<td>Übergangsstück Lagewechsel 180°</td>
</tr>
</tbody>
</table>
Zubehör

Flexibles Luftverteilsystem LVE

LVE BD
Formteil für das flache und flexible Luftverteilsystem LVE aus Kunststoff.

<table>
<thead>
<tr>
<th>LVE BD 231116</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breite mm 144</td>
</tr>
<tr>
<td>Tiefe mm 20</td>
</tr>
<tr>
<td>Höhe mm 64</td>
</tr>
<tr>
<td>Länge mm 20</td>
</tr>
<tr>
<td>Beschreibung Blinddeckel, 5 St.</td>
</tr>
</tbody>
</table>

LVE KF
Kanalbefestigungsschelle bestehend aus stabilen Stahlblechbügeln zur Befestigung des flex. Luftkanals auf dem Rohbetonboden, geeignet für Schlagdübel.

<table>
<thead>
<tr>
<th>LVE KF 231113</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breite mm 25</td>
</tr>
<tr>
<td>Tiefe mm 25</td>
</tr>
<tr>
<td>Höhe mm 53</td>
</tr>
<tr>
<td>Länge mm 215</td>
</tr>
<tr>
<td>Beschreibung Kanalbefestigungsschelle, 10 St.</td>
</tr>
</tbody>
</table>

LVE M
Formteil für das flache und flexible Luftverteilsystem LVE aus Kunststoff.

<table>
<thead>
<tr>
<th>LVE M 231112</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breite mm 130</td>
</tr>
<tr>
<td>Tiefe mm 115</td>
</tr>
<tr>
<td>Höhe mm 55</td>
</tr>
<tr>
<td>Länge mm 115</td>
</tr>
<tr>
<td>Beschreibung Muffe, 5 St.</td>
</tr>
</tbody>
</table>

LVE Ü 90
Formteil für das flache und flexible Luftverteilsystem LVE aus Kunststoff.

<table>
<thead>
<tr>
<th>LVE Ü 90 233032</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breite mm 144</td>
</tr>
<tr>
<td>Höhe mm 95</td>
</tr>
<tr>
<td>Länge mm 100</td>
</tr>
<tr>
<td>Beschreibung Übergangsstück flach auf LVS</td>
</tr>
</tbody>
</table>

LVE ÜB-O

<table>
<thead>
<tr>
<th>LVE ÜB-O 235913</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breite mm 144</td>
</tr>
<tr>
<td>Tiefe mm 180</td>
</tr>
<tr>
<td>Höhe mm 120</td>
</tr>
<tr>
<td>Beschreibung Übergangsbogen auf LVS, Anschluss von oben</td>
</tr>
</tbody>
</table>

| LVE ÜB-U |
|-----------|---
| 235912 |
| Breite mm | 144
| Tiefe mm | 180
| Höhe mm | 120
| Beschreibung | Übergangsbogen auf LVS, Anschluss von unten |
Zubehör

Flexible Luftverteilsystem LVE Fußbodenausträge

<table>
<thead>
<tr>
<th>LVE FG-W</th>
<th>Rechteckiges Luftgitter für den Fußbodenaustritt LVE FA, geeignet für den Fußboden im Zuluftbereich.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVE FG-W</td>
<td>231969</td>
</tr>
<tr>
<td>Breite</td>
<td>mm 180</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm 340</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm 40</td>
</tr>
<tr>
<td>Länge</td>
<td>mm 340</td>
</tr>
<tr>
<td>Beschreibung</td>
<td>Design Welle, Edelstahl gebürstet</td>
</tr>
<tr>
<td>Druckverlust bei 45 m³/h</td>
<td>Pa 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LVE FG-S</th>
<th>Rechteckiges Luftgitter für den Fußbodenaustritt LVE FA, geeignet für den Fußboden im Zuluftbereich.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVE FG-S</td>
<td>231970</td>
</tr>
<tr>
<td>Breite</td>
<td>mm 180</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm 340</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm 40</td>
</tr>
<tr>
<td>Länge</td>
<td>mm 340</td>
</tr>
<tr>
<td>Beschreibung</td>
<td>Design Natur, Edelstahl gebürstet</td>
</tr>
<tr>
<td>Druckverlust bei 45 m³/h</td>
<td>Pa 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LVE FG-R</th>
<th>Rechteckiges Luftgitter für den Fußbodenaustritt LVE FA, geeignet für den Fußboden im Zuluftbereich.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVE FG-R</td>
<td>231971</td>
</tr>
<tr>
<td>Breite</td>
<td>mm 180</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm 340</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm 40</td>
</tr>
<tr>
<td>Länge</td>
<td>mm 340</td>
</tr>
<tr>
<td>Beschreibung</td>
<td>Design Kreis, Edelstahl gebürstet</td>
</tr>
<tr>
<td>Druckverlust bei 45 m³/h</td>
<td>Pa 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LVE FG</th>
<th>Rechteckiges Luftgitter für den Fußbodenaustritt LVE FA, geeignet für den Fußboden im Zuluftbereich.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVE FG</td>
<td>231115</td>
</tr>
<tr>
<td>Breite</td>
<td>mm 180</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm 340</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm 40</td>
</tr>
<tr>
<td>Länge</td>
<td>mm 340</td>
</tr>
<tr>
<td>Beschreibung</td>
<td>Design Langloch, Edelstahl gebürstet</td>
</tr>
<tr>
<td>Druckverlust bei 45 m³/h</td>
<td>Pa 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LVE FG-B</th>
<th>Rechteckiges Luftgitter für den Fußbodenaustritt LVE FA, geeignet für den Fußboden im Zuluftbereich.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVE FG-B</td>
<td>231972</td>
</tr>
<tr>
<td>Breite</td>
<td>mm 180</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm 340</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm 40</td>
</tr>
<tr>
<td>Länge</td>
<td>mm 340</td>
</tr>
<tr>
<td>Beschreibung</td>
<td>Design Kreis, Edelstahl gebürstet, steckbar</td>
</tr>
<tr>
<td>Druckverlust bei 45 m³/h</td>
<td>Pa 1</td>
</tr>
</tbody>
</table>
Zubehör

Flexibles Luftverteilssystem LVE Fußbodenauslässe

LVE FG-BW

Rechteckiges Luftgitter für den Fußbodenauslass LVE FA, geeignet für den Fußboden im Zuluftbereich.

<table>
<thead>
<tr>
<th></th>
<th>LVE FG-BW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breite (mm)</td>
<td>180</td>
</tr>
<tr>
<td>Tiefe (mm)</td>
<td>340</td>
</tr>
<tr>
<td>Höhe (mm)</td>
<td>40</td>
</tr>
<tr>
<td>Länge (mm)</td>
<td>340</td>
</tr>
<tr>
<td>Beschreibung</td>
<td>Design Kreis, weiß lackiert, steckbar</td>
</tr>
<tr>
<td>Druckverlust bei 45 m³/h (Pa)</td>
<td>1</td>
</tr>
</tbody>
</table>
Zubehör
Flexibles Luftverteilungssystem LVE Wand- und Deckenauslässe

LVE WG-W
Rundes Luftgitter mit Luftfilter für den Wand- und Deckenauslass LVE WA, geeignet für Wand und Decke im Abluftbereich sowie vorzugsweise für Wand im Zuluftbereich.

<table>
<thead>
<tr>
<th>LVE WG-W</th>
<th>231974</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
</tr>
<tr>
<td>Durchmesser</td>
<td>mm</td>
</tr>
<tr>
<td>Beschreibung</td>
<td>Design Welle, Edelstahl gebürstet</td>
</tr>
<tr>
<td>Druckverlust bei 15 m³/h</td>
<td>Pa</td>
</tr>
<tr>
<td>Druckverlust bei 30 m³/h</td>
<td>Pa</td>
</tr>
<tr>
<td>Druckverlust bei 45 m³/h</td>
<td>Pa</td>
</tr>
</tbody>
</table>

LVE WG-S
Rundes Luftgitter mit Luftfilter für den Wand- und Deckenauslass LVE WA, geeignet für Wand und Decke im Abluftbereich sowie vorzugsweise für Wand im Zuluftbereich.

<table>
<thead>
<tr>
<th>LVE WG-S</th>
<th>231975</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
</tr>
<tr>
<td>Durchmesser</td>
<td>mm</td>
</tr>
<tr>
<td>Beschreibung</td>
<td>Design Natur, Edelstahl gebürstet</td>
</tr>
<tr>
<td>Druckverlust bei 15 m³/h</td>
<td>Pa</td>
</tr>
<tr>
<td>Druckverlust bei 30 m³/h</td>
<td>Pa</td>
</tr>
<tr>
<td>Druckverlust bei 45 m³/h</td>
<td>Pa</td>
</tr>
</tbody>
</table>

LVE WG
Rundes Luftgitter mit Luftfilter für den Wand- und Deckenauslass LVE WA, geeignet für Wand und Decke im Abluftbereich sowie vorzugsweise für Wand im Zuluftbereich.

<table>
<thead>
<tr>
<th>LVE WG</th>
<th>231114</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
</tr>
<tr>
<td>Durchmesser</td>
<td>mm</td>
</tr>
<tr>
<td>Beschreibung</td>
<td>Design Langloch, Edelstahl gebürstet</td>
</tr>
<tr>
<td>Druckverlust bei 15 m³/h</td>
<td>Pa</td>
</tr>
<tr>
<td>Druckverlust bei 30 m³/h</td>
<td>Pa</td>
</tr>
<tr>
<td>Druckverlust bei 45 m³/h</td>
<td>Pa</td>
</tr>
</tbody>
</table>

LVE WG-B
Rundes Luftgitter mit Luftfilter für den Wand- und Deckenauslass LVE WA, geeignet für Wand und Decke im Abluftbereich sowie vorzugsweise für Wand im Zuluftbereich.

<table>
<thead>
<tr>
<th>LVE WG-B</th>
<th>231976</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
</tr>
<tr>
<td>Durchmesser</td>
<td>mm</td>
</tr>
<tr>
<td>Beschreibung</td>
<td>Design Kreis, Edelstahl gebürstet</td>
</tr>
<tr>
<td>Druckverlust bei 15 m³/h</td>
<td>Pa</td>
</tr>
<tr>
<td>Druckverlust bei 30 m³/h</td>
<td>Pa</td>
</tr>
<tr>
<td>Druckverlust bei 45 m³/h</td>
<td>Pa</td>
</tr>
</tbody>
</table>
Zubehör

Flexibles Luftverteilungssystem LVE Wand- und Deckenauslässe

LVE WG-BW

Rundes Luftgitter mit Luftfilter für den Wand- und Deckenauslass LVE WA, geeignet für Wand und Decke im Abluftbereich sowie vorzugsweise für Wand im Zuluftbereich.

<table>
<thead>
<tr>
<th>LVE WG-BW</th>
<th>Breite</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>231977</td>
<td>150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tiefe</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Höhe</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Länge</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Durchmesser</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Design Kreis, weiß lackiert</th>
</tr>
</thead>
</table>

LVE WG

Rundes Luftgitter mit Luftfilter für den Wand- und Deckenauslass LVE WA, geeignet für Wand und Decke im Abluftbereich sowie vorzugsweise für Wand im Zuluftbereich.

<table>
<thead>
<tr>
<th>LVE WG</th>
<th>Breite</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>233408</td>
<td>150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Höhe</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Länge</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Durchmesser</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Design Langloch, weiß lackiert</th>
</tr>
</thead>
</table>

Druckverlust

<table>
<thead>
<tr>
<th>Druckverlust bei 15 m³/h</th>
<th>Pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Druckverlust bei 30 m³/h</th>
<th>Pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Druckverlust bei 45 m³/h</th>
<th>Pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

LVE ZWG 100

Luftleitblech für das Luftgitter LVE WG zur Ablenkung der Luftströmung zur Seite bei Deckenmontage.

<table>
<thead>
<tr>
<th>LVE ZWG 100</th>
<th>Höhe</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>232022</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Durchmesser</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Luftleitblech für LVE WG</th>
</tr>
</thead>
</table>

LVE ZWG 100

Luftleitblech für das Luftdurchlassgitter LVE WGW weiß zur Vermeidung der senkrechten Zuluftströmung nach unten bei Deckenmontage, mit Montagematerial.

<table>
<thead>
<tr>
<th>LVE ZWG 100</th>
<th>Höhe</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>239135</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Durchmesser</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Luftleitblech für LVE WGW</th>
</tr>
</thead>
</table>

LVE WG 125

Rundes Luftgitter mit Luftfilter für den Wand- und Deckenauslass LVE WA, geeignet für Wand und Decke im Abluftbereich sowie vorzugsweise für Wand im Zuluftbereich.

<table>
<thead>
<tr>
<th>LVE WG 125</th>
<th>Breite</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>239129</td>
<td>180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Höhe</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Länge</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Durchmesser</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Design Langloch, Edelstahl gebürstet</th>
</tr>
</thead>
</table>

Druckverlust

<table>
<thead>
<tr>
<th>Druckverlust bei 15 m³/h</th>
<th>Pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Druckverlust bei 30 m³/h</th>
<th>Pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Druckverlust bei 45 m³/h</th>
<th>Pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
Zubehör

Flexibles Luftverteilsystem LVE Wand- und Deckenauslässe

LVE WGW 125
Rundes Luftgitter mit Luftfilter für den Wand- und Deckenauslass LVE WA, geeignet für Wand und Decke im Abluftbereich sowie vorzugsweise für Wand im Zuluftbereich.

<table>
<thead>
<tr>
<th>LVE WGW 125</th>
</tr>
</thead>
<tbody>
<tr>
<td>239130</td>
</tr>
<tr>
<td>Breite</td>
</tr>
<tr>
<td>Höhe</td>
</tr>
<tr>
<td>Länge</td>
</tr>
<tr>
<td>Durchmesser</td>
</tr>
<tr>
<td>Beschreibung</td>
</tr>
<tr>
<td>Druckverlust</td>
</tr>
<tr>
<td>bei 15 m³/h</td>
</tr>
<tr>
<td>bei 30 m³/h</td>
</tr>
<tr>
<td>bei 45 m³/h</td>
</tr>
</tbody>
</table>

LVE WGB 125
Rundes Luftgitter mit Luftfilter für den Wand- und Deckenauslass LVE WA, geeignet für Wand und Decke im Abluftbereich sowie vorzugsweise für Wand im Zuluftbereich.

<table>
<thead>
<tr>
<th>LVE WGB 125</th>
</tr>
</thead>
<tbody>
<tr>
<td>239131</td>
</tr>
<tr>
<td>Breite</td>
</tr>
<tr>
<td>Höhe</td>
</tr>
<tr>
<td>Länge</td>
</tr>
<tr>
<td>Durchmesser</td>
</tr>
<tr>
<td>Beschreibung</td>
</tr>
<tr>
<td>Druckverlust</td>
</tr>
<tr>
<td>bei 15 m³/h</td>
</tr>
<tr>
<td>bei 30 m³/h</td>
</tr>
<tr>
<td>bei 45 m³/h</td>
</tr>
</tbody>
</table>

LVE WGBW 125
Rundes Luftgitter mit Luftfilter für den Wand- und Deckenauslass LVE WA, geeignet für Wand und Decke im Abluftbereich sowie vorzugsweise für Wand im Zuluftbereich.

<table>
<thead>
<tr>
<th>LVE WGBW 125</th>
</tr>
</thead>
<tbody>
<tr>
<td>239132</td>
</tr>
<tr>
<td>Breite</td>
</tr>
<tr>
<td>Höhe</td>
</tr>
<tr>
<td>Länge</td>
</tr>
<tr>
<td>Durchmesser</td>
</tr>
<tr>
<td>Beschreibung</td>
</tr>
<tr>
<td>Druckverlust</td>
</tr>
<tr>
<td>bei 15 m³/h</td>
</tr>
<tr>
<td>bei 30 m³/h</td>
</tr>
<tr>
<td>bei 45 m³/h</td>
</tr>
</tbody>
</table>

LVE ZWG 125
Luftleitblech für das Luftgitter LVE WG zur Ablenkung der Luftströmung zur Seite bei Deckenmontage.

<table>
<thead>
<tr>
<th>LVE ZWG 125</th>
</tr>
</thead>
<tbody>
<tr>
<td>239133</td>
</tr>
<tr>
<td>Höhe</td>
</tr>
<tr>
<td>Durchmesser</td>
</tr>
<tr>
<td>Beschreibung</td>
</tr>
</tbody>
</table>
Zubehör
Flexibles Luftverteilungssystem LVE Wand- und Deckenauslässe

LVE ZWGW 125

Luftleitblech für das Luftdurchlassgitter LVE WGW weiß zur Vermeidung der senkrechten Zuluftströmung nach unten bei Deckenmontage, mit Montagematerial.

<table>
<thead>
<tr>
<th>LVE ZWGW 125</th>
<th>239134</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Durchmesser</td>
<td>mm</td>
</tr>
<tr>
<td>Beschreibung</td>
<td>Luftleitblech für LVE WGW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Höhe</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchmesser</td>
<td>150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luftleitblech für LVE WGW</td>
</tr>
</tbody>
</table>
Zubehör

Flexibles Luftverteilsystem LVS

<table>
<thead>
<tr>
<th>Artikelnummer</th>
<th>Beschreibung</th>
<th>Gewicht</th>
<th>Durchmesser</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVS RP 75-25</td>
<td>Flexibles Kunststoffrohr, DN 75, 25 m lang</td>
<td>kg</td>
<td>mm</td>
</tr>
<tr>
<td>LVS RP 75-50</td>
<td>Flexibles Kunststoffrohr, DN 75, 50 m lang</td>
<td>kg</td>
<td>mm</td>
</tr>
<tr>
<td>LVS RP90</td>
<td>Flexibles Kunststoffrohr, DN 90, 25 m lang</td>
<td>kg</td>
<td>mm</td>
</tr>
<tr>
<td>LVS M 75</td>
<td>Formteile/Zubehör für das flexible Luftverteilsystem LVS.</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>LVS M 90</td>
<td>Verbindungsmuffe für flex Wellrohrsystem DN 90 aus PE mit Dichtungen.</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>LVS WA 125-2-75</td>
<td>Wandauslass aus korrosionsbeständigem, geruchsneutralen Kunststoff. Anschlussmöglichkeiten für flex. Luftkanal, mit Blinddeckel.</td>
<td>mm</td>
<td>mm</td>
</tr>
</tbody>
</table>

www.stiebel-eltron.de Planungshandbuch Lüftung | 285
Zubehör

Flexibles Luftverteilsystem LVS

LVS U 75 - 100
Formteile/Zubehör für das flexible Luftverteilsystem LVS.

<table>
<thead>
<tr>
<th>LVS U 75 - 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>227650</td>
</tr>
<tr>
<td>Höhe</td>
</tr>
<tr>
<td>445</td>
</tr>
<tr>
<td>Breite</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>Länge</td>
</tr>
<tr>
<td>160</td>
</tr>
<tr>
<td>Durchmesser</td>
</tr>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

LVS U 75-100-2
Deckenauslass für das LVS Luftverteilsystem für den Anschluss eines Ventils DN 100 für Zu- oder Abluft. Zwei Anschlüsse DN 75 für die flexiblen Luftkanäle LVS RP 75.

<table>
<thead>
<tr>
<th>LVS U 75-100-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>232116</td>
</tr>
<tr>
<td>Höhe</td>
</tr>
<tr>
<td>445</td>
</tr>
<tr>
<td>Breite</td>
</tr>
<tr>
<td>230</td>
</tr>
<tr>
<td>Länge</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>Gewicht</td>
</tr>
<tr>
<td>1,2</td>
</tr>
<tr>
<td>Durchmesser</td>
</tr>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

LVS DA 75-125-2
Deckenauslass für das LVS Luftverteilsystem für den Anschluss eines Ventils für Zu- oder Abluft. Zwei Anschlüsse für die flexiblen Luftkanäle LVS RP 75.

<table>
<thead>
<tr>
<th>LVS DA 75-125-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>236423</td>
</tr>
<tr>
<td>Höhe</td>
</tr>
<tr>
<td>445</td>
</tr>
<tr>
<td>Breite</td>
</tr>
<tr>
<td>230</td>
</tr>
<tr>
<td>Länge</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>Gewicht</td>
</tr>
<tr>
<td>1,4</td>
</tr>
<tr>
<td>Durchmesser</td>
</tr>
<tr>
<td>125</td>
</tr>
</tbody>
</table>
Zubehör

Flexibles Luftverteilsystem LVS Luftverteiler

LVS VT 9
Luftverteiler für das flexible Luftverteilsystem LVS geeignet für den Einbau auf die Wand oder unter die Decke.

<table>
<thead>
<tr>
<th>LVS VT 9</th>
<th>234492</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
</tr>
<tr>
<td>Gewicht</td>
<td>kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LVS VT 9</th>
<th>234492</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>250</td>
</tr>
<tr>
<td>Breite</td>
<td>500</td>
</tr>
<tr>
<td>Länge</td>
<td>480</td>
</tr>
<tr>
<td>Gewicht</td>
<td>9,5</td>
</tr>
</tbody>
</table>

LVS VTS 9
Luftverteiler für das flexible Luftverteilsystem LVS geeignet für den Einbau auf die Wand oder unter die Decke.

<table>
<thead>
<tr>
<th>LVS VTS 9</th>
<th>234493</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
</tr>
<tr>
<td>Gewicht</td>
<td>kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LVS VTS 9</th>
<th>234493</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>250</td>
</tr>
<tr>
<td>Breite</td>
<td>500</td>
</tr>
<tr>
<td>Länge</td>
<td>1165</td>
</tr>
<tr>
<td>Gewicht</td>
<td>20</td>
</tr>
</tbody>
</table>

LVS VTS 6
Luftverteiler für das flexible Luftverteilsystem LVS geeignet für den Einbau auf die Wand oder unter die Decke.

<table>
<thead>
<tr>
<th>LVS VTS 6</th>
<th>201456</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
</tr>
<tr>
<td>Gewicht</td>
<td>kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LVS VTS 6</th>
<th>201456</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>150</td>
</tr>
<tr>
<td>Breite</td>
<td>500</td>
</tr>
<tr>
<td>Länge</td>
<td>640</td>
</tr>
<tr>
<td>Gewicht</td>
<td>8,5</td>
</tr>
</tbody>
</table>
Zubehör

Flexible Luftverteilsystem LVS Zubehör Luftverteiler

ZLVS VTÜ 75-90

Übergangsstück von DN 75 auf DN 90 LVS

<table>
<thead>
<tr>
<th>ZLVS VTÜ 75–90</th>
<th>234494</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Länge</td>
<td>mm</td>
</tr>
<tr>
<td>Gewicht</td>
<td>kg</td>
</tr>
<tr>
<td>Höhe</td>
<td>92</td>
</tr>
<tr>
<td>Breite</td>
<td>92</td>
</tr>
<tr>
<td>Länge</td>
<td>150</td>
</tr>
<tr>
<td>Gewicht</td>
<td>0,5</td>
</tr>
</tbody>
</table>

ZLVS O 75-10

Dichtringset bestehend aus O-Ringen passend zum LVS Rohrpa- ket. Einsetzbar für die Abdichtung der Verbindung beim VTS-Ver- teiler und LVS Umlenkstück.

<table>
<thead>
<tr>
<th>ZLVS O 75–10</th>
<th>236421</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchmesser</td>
<td>mm</td>
</tr>
<tr>
<td>Durchmesser</td>
<td>75</td>
</tr>
</tbody>
</table>

ZLVS O 90-10

Dichtringset bestehend aus O-Ringen passend zum LVS Rohrpa- ket. Einsetzbar für die Abdichtung der Verbindung beim VTS-Ver- teiler und LVS Umlenkstück.

<table>
<thead>
<tr>
<th>ZLVS O 90–10</th>
<th>236422</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchmesser</td>
<td>mm</td>
</tr>
<tr>
<td>Durchmesser</td>
<td>90</td>
</tr>
</tbody>
</table>
Zubehör
Montagezubehör

LWF DS 100	LWF DS 125	LWF DS 160
Innendurchmesser | mm | 125 | 160
Außendurchmesser | mm | 185 | 220
Länge | mm | 4000 | 4000

LWF LB 10
Montagematerial zum Befestigen des Luftverteilsystems.

LWF KB 10
Hochwertiges Butylklebeband mit hoher Klebekraft zum Abdichten von Verbindungen in Luftkanalsystemen.

LSWP 125-4 Al
Wärmegedämmter Luftschlauch für die Außen- und Fortluftrührung. Die Außenhülle besteht aus gewebeverstärktem Aluminium/Polyesterlaminat und die Innenhülle besteht aus Polyamidgewebe, die Zwischenlage aus Mineralwolle dient als Schallschutz und Wärmedämmung. Die Schlauchenden sind zur Befestigung oval verformbar.

LSWP 160-4 Al

www.stiebel-eltron.de Planungshandbuch Lüftung | 289
Zubehör
Montagezubehör

LSWP 200-4 AL

<table>
<thead>
<tr>
<th></th>
<th>LSWP 200-4 AL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge</td>
<td>m</td>
</tr>
<tr>
<td>Innendurchmesser</td>
<td>mm</td>
</tr>
<tr>
<td>Einsatzgrenze</td>
<td>°C</td>
</tr>
<tr>
<td>Wandstärke</td>
<td>mm</td>
</tr>
</tbody>
</table>

Befestigungsschelle gemäß den Normen der DIN 3017. Das Band besteht aus Edelstahl (UNI x 8 Cr 17-DIN 1.4016(W2) - AISI 430) und der Verschluss ist aus gehärtetem galvanisierten Stahl hergestellt.

<table>
<thead>
<tr>
<th></th>
<th>BS LSWP 160-4 AL</th>
<th>BS LSWP 200-4 AL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchmesser min.</td>
<td>mm</td>
<td>60</td>
</tr>
<tr>
<td>Durchmesser max.</td>
<td>mm</td>
<td>180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>BS LSWP 200-4 AL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge</td>
<td>m</td>
</tr>
<tr>
<td>Innendurchmesser</td>
<td>mm</td>
</tr>
<tr>
<td>Einsatzgrenze</td>
<td>°C</td>
</tr>
<tr>
<td>Wandstärke</td>
<td>mm</td>
</tr>
</tbody>
</table>
Zubehör

Komfortzubehör

LWF HR 160

Heizregister für den Anschluss an ein wasserführendes Heizungssystem für Nacherwärmung der Zuluft.

<table>
<thead>
<tr>
<th>LWF HR 160</th>
<th>170015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
<tr>
<td>Gewicht</td>
<td>kg</td>
</tr>
<tr>
<td>Heizleistung</td>
<td>kW</td>
</tr>
<tr>
<td>Anschlussdurchmesser</td>
<td>mm</td>
</tr>
</tbody>
</table>

LWF FBG 160

Luftfilterbox mit Grobstaubfiltermatte G4 für den Einbau in die Außenluftansaugung, Gehäuse aus galvanisiertem Stahlblech.

<table>
<thead>
<tr>
<th>LWF FBG 160</th>
<th>233015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
</tbody>
</table>

FMS FBG G4–5

Ersatzfilterset für die Filterbox FBG.

<table>
<thead>
<tr>
<th>FMS FBG G4–5</th>
<th>233028</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filterklasse</td>
<td>G4</td>
</tr>
<tr>
<td>Filterklasse</td>
<td>ISO Coarse > 60 % (G4)</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
</tbody>
</table>

LWF FBF 160

Luftfilterbox mit Feinfilterkassette F5 zu Filterung der Zuluft in Wohnungslüftungssystemen im Stahlblechgehäuse mit Rohranschlussstutzen aus verzinktem Stahlblech, mit 2 Einschüben für unterschiedliche Filterqualitäten bis F9 und GeruchsfILTERUNG.

<table>
<thead>
<tr>
<th>LWF FBF 160</th>
<th>233016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
<tr>
<td>Gewicht</td>
<td>kg</td>
</tr>
<tr>
<td>Anfangsdruckverlust</td>
<td>Pa</td>
</tr>
</tbody>
</table>

ZLWF FBF 160 ISO

Isolierset zur dampfdiffusionsdichten Isolierung der Filterbox FBF, bestehend aus selbstklebenden Isolierplatten.

<table>
<thead>
<tr>
<th>ZLWF FBF 160 ISO</th>
<th>238788</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
</tbody>
</table>
Zubehör

Komfortzubehör

<table>
<thead>
<tr>
<th>FMK M5-1</th>
<th>Ersatzfilterkassetten für die Filterbox FBF aus bruchsicheren Polyesterfasern mit teilweise progressivem Aufbau, thermisch gebunden, temperaturbeständig bis 100 °C, Z-gefaltet im stabilen Rahmen aus feuchtigkeitsbeständigem Material.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filterfläche</td>
<td>m²</td>
</tr>
<tr>
<td>Anfangsdruckverlust</td>
<td>Pa</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FMK F7-1</th>
<th>Ersatzfilterkassetten für die Filterbox FBF aus bruchsicheren Polyesterfasern mit teilweise progressivem Aufbau, thermisch gebunden, temperaturbeständig bis 100 °C, Z-gefaltet im stabilen Rahmen aus feuchtigkeitsbeständigem Material.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filterklasse</td>
<td>F7</td>
</tr>
<tr>
<td>Filterfläche</td>
<td>m²</td>
</tr>
<tr>
<td>Anfangsdruckverlust</td>
<td>Pa</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FMK F7LP-1</th>
<th>Ersatzfilterkassetten für die Filterbox FBF aus bruchsicheren Polyesterfasern mit teilweise progressivem Aufbau, thermisch gebunden, temperaturbeständig bis 100 °C, Z-gefaltet im stabilen Rahmen aus feuchtigkeitsbeständigem Material.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filterklasse</td>
<td>F7</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FMK F9-1</th>
<th>Ersatzfilterkassetten für die Filterbox FBF aus bruchsicheren Polyesterfasern mit teilweise progressivem Aufbau, thermisch gebunden, temperaturbeständig bis 100 °C, Z-gefaltet im stabilen Rahmen aus feuchtigkeitsbeständigem Material.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filterklasse</td>
<td>F9</td>
</tr>
<tr>
<td>Höhe</td>
<td>mm</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
</tr>
</tbody>
</table>
Zubehör
Komfortzubehör

FMK VOC 1

Aktivkohle-Ersatzfilterkassette für die Filterbox LWF FBF, für die Geruchsführung von VOCs (flüchtige organische Verbindungen) und anderen Gerüchen wie z.B. Abgase. Mehrschichtiger Aufbau aus unterschiedlich aktivierter Aktivkohle mit sehr großer Oberfläche, kompakte Bauweise mit einem Schutzflies.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>mm</td>
<td>285</td>
</tr>
<tr>
<td>Breite</td>
<td>mm</td>
<td>285</td>
</tr>
<tr>
<td>Tiefe</td>
<td>mm</td>
<td>60</td>
</tr>
</tbody>
</table>

233870
Ablufträume
Feuchträume bzw. Bad-, Toiletten- und Küchenbereiche, aus denen verbrauchte Luft abgesaugt wird.

Abluftsystem
Lüftungsanlage einschließlich Luftleitungsnetz mit ventilatorgestützter, geförderter Abluft. Die Zuluft strömt als unbehandelte Außenluft über Außenluftdurchlässe nach.

Aufenthaltsbereich
Behaglichkeitsbereich in Räumen, der gebildet wird durch
- Höhe von 0,1 m bis 1,8 m über dem Fußboden
- Abstand > 0,5 m zu Außen- und Innenwänden
- Abstand von > 1 m zu Außenfenstern, Türen und Heizflächen

Ausgeglichene Lüftung
Ventilatorgestützte Lüftung, bei der Zuluft- und Abluftvolumenstrom den gleichen Auslegungswert besitzen. Man spricht auch von „balancierter Lüftung“.

Auslegungs-Differenzdruck

Außenluftdurchlass
Lüftungskomponente, die das geplante Durchströmen von Luft durch die Gebäudehülle ermöglicht. Als Außenluftdurchführung zählen auch Lüftungskomponenten in Fenstern und Türen.

Bedarfslüftung
Lüftung, bei der der Luftvolumenstrom an den jeweiligen Bedarf angepasst wird, z. B. durch Luftqualitätssensoren.

(Lüftungs-)Betriebsstufen
Es werden vier Betriebsstufen unterschieden:
- Lüftung für den Feuchteschutz
- reduzierte Lüftung
- Nennlüftung
- Intensivlüftung

(Luft-)Dichtheit
Zustandsbeschreibung der Hüllkonstruktion hinsichtlich ihrer (Luft-)Durchlässigkeit; Synonym für möglichst geringe Durchlässigkeit.

Erdreich-Luft-Wärmeübertrager
Einrichtung zur Übertragung thermischer Energie vom Erdreich auf einen leitungsgebundenen Luftmassestrom (Heizfall) oder umgekehrt (Kühlfall).

Gesamt-Außenluftvolumenstrom
In der Nutzungseinheit insgesamt wirksamer Luftvolumenstrom, der aus geplanter freier bzw. lüftergestützter Lüftung einschließlich Infiltration resultiert. Der Luftvolumenstrom wird in m³/h bzw. m³/s angegeben.

Gleichwertiger Durchmesser (hydraulischer Durchmesser)
Durchmesser einer geraden Luftleitung mit nicht rundem Querschnitt, der bei gleichem Luftvolumenstrom zum gleichen Druckabfall wie eine kreisrunde Luftleitung führt.

Infiltration.
Durch Undichtheiten in der Gebäudehülle ein- und austretende Luftmengen.

Intensivlüftung
Zeitweilig notwendige Lüftung mit erhöhtem Luftvolumenstrom zum Abbau von Lastspitzen (Lastbetrieb). Bei der Intensivlüftung darf von einer Nutzerunterstützung (zeitweilig manuelles Fensteröffnen) ausgegangen werden.

Kondensat
Aus der Luft ausgeschiedenes Wasser. Dieser Effekt tritt bei bestimmten Temperaturzuständen auf, siehe auch „Taupunkt“.

Kurzschlussströmung
Direktes Ansaugen von Fortluft am Außenluftdurchlass, Zuluft am Abluftdurchlass bzw. Überströmfluß über Undichtheiten/Leitungs durchführungen aus anderen Nutzungseinheiten.

Luftfeuchte, relative
Verhältnis des momentanen Wasserdampfanteils der Luft bezogen auf den größtmöglichen Wert bei entsprechender Temperatur in % r. F (relative Luftfeuchte).

Lüftung zum Feuchteschutz
Notwendige Lüftung zur Sicherstellung des Bautenschutzes (Feuchtigkeit) unter üblichen Nutzungsbedingungen bei teilweise reduzierten Feuchteleistungen, z. B. zeitweilige Abwesenheit der Nutzer und kein Wäschetrocknen in der Nutzungseinheit.

Luftwechsel
Stündlicher Luftvolumenstrom, bezogen auf das Volumen einer Nutzungseinheit bzw. eines Raumes. Einheit: 1/h

Nennlüftung

Reduzierte Lüftung
Notwendige Lüftung zur Gewährleistung der hygienischen Mindestanforderungen sowie des Bautenschutzes (Feuchtigkeit) unter üblichen Nutzungsbedingungen bei teilweise reduzierten Feuchteleistungen und Stofflasten, z. B. infolge zeitweiliger Abwesenheit von Nutzern.

Taupunkt
Luftzustand, bei dem die Luft keinen Wasserdampfanteil der Luft bezogen auf den größtmöglichen Wert bei entsprechender Temperatur in % r. F (relative Luftfeuchte).
Überströmbereich
Bereich zwischen zwei Räumen einer Wohnung, in dem durch Druckunterschied Luft überströmt (vom Zuluftbereich zum Abluftbereich).

Wärmerückgewinnung
Maßnahme zur Wiedernutzung von thermischer Energie der Abluft.

Zentrallüfter-Lüftungsgerät
Abluftgerät oder Zu-/Abluftgerät mit Zentrallüfter für die Lüftung von ein- oder mehrgeschossigen Nutzungseinheiten.

Zulufträume

Zu-/Ablufts system
Anhang
Formelsammlung

Luftwechsel

\[LW = \frac{Zuluft - /Abluftvolumenstrom}{RI} \]

LW Luftwechselrate [1/h]
RI Rauminhalt [m³]

Strömungsgleichung

\[V = A \cdot v \cdot 3600 \]

V Volumenstrom [m³/h]
A Querschnittsfläche [m²]
v Geschwindigkeit [m/s]

Kontinuitätsgesetz

\[\frac{v_1}{v_2} = \frac{A_2}{A_1} \]

A Querschnittsfläche [m²]
v Geschwindigkeit [m/s]

Druckverlust-Berechnung

\[\Delta p = L \cdot R + Z \]

\[\Delta p_1 = \frac{V_1}{U} \]
\[\Delta p_2 = \frac{V_2}{U} \]

\[\Phi = \frac{tz - ta}{ti - ta} \]

dg gleichwertiger Durchmesser
a Höhe
b Breite

dg gleichwertiger Durchmesser
A Fläche
U Umfang

Einzelwiderstände

\[Z = \sum \frac{\zeta}{2} \cdot v^2 \]

Z Widerstandsbeiwert „Zeta”
\(\zeta \)
\(\zeta \) Dichte „Rho” [kg/m³]
v Strömungsgeschwindigkeit [m/s]

Anmerkung: Die Widerstandsbeiwerte Zeta für verschiedene Formteile können aus entsprechenden Tabellen entnommen werden.
Legende zu den Standardschaltungen

<table>
<thead>
<tr>
<th>Legende</th>
<th>WPMsystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1.1</td>
<td>CAN A</td>
</tr>
<tr>
<td>X1.2</td>
<td>CAN B</td>
</tr>
<tr>
<td>X1.3</td>
<td>Außenfühler</td>
</tr>
<tr>
<td>X1.4</td>
<td>Puffer- oder Heizkreisfühler 1</td>
</tr>
<tr>
<td>X1.5</td>
<td>Vorlauffühler</td>
</tr>
<tr>
<td>X1.6</td>
<td>Heizkreisfühler 2</td>
</tr>
<tr>
<td>X1.7</td>
<td>Heizkreisfühler 3</td>
</tr>
<tr>
<td>X1.8</td>
<td>Warmwasserspeicher Fühler</td>
</tr>
<tr>
<td>X1.9</td>
<td>Quellefühler</td>
</tr>
<tr>
<td>X1.10</td>
<td>2.Wärmeerzeuger-Fühler</td>
</tr>
<tr>
<td>X1.11</td>
<td>Fühler Kühlen</td>
</tr>
<tr>
<td>X1.12</td>
<td>Fühler Zirkulation</td>
</tr>
<tr>
<td>X1.13</td>
<td>Fernbedienung FE 7</td>
</tr>
<tr>
<td>X1.14</td>
<td>Analogeingang 3, 0...10V</td>
</tr>
<tr>
<td>X1.15</td>
<td>PWM Ausgang 3</td>
</tr>
<tr>
<td>X1.16</td>
<td>PWM Ausgang 1</td>
</tr>
<tr>
<td>X1.17</td>
<td>Stromversorgung</td>
</tr>
<tr>
<td>X1.18</td>
<td>Stromversorgung</td>
</tr>
<tr>
<td>X1.19</td>
<td>Stromversorgung</td>
</tr>
<tr>
<td>X2.1</td>
<td>EVII, Freigabekontakt (ländererspezifisch)</td>
</tr>
<tr>
<td>X2.2</td>
<td>Pumpen 1</td>
</tr>
<tr>
<td>X2.3</td>
<td>Heizkreispumpe 1</td>
</tr>
<tr>
<td>X2.4</td>
<td>Heizkreispumpe 2</td>
</tr>
<tr>
<td>X2.5</td>
<td>Heizkreispumpe 3</td>
</tr>
<tr>
<td>X2.6</td>
<td>Pufferladepumpe 1</td>
</tr>
<tr>
<td>X2.7</td>
<td>Pufferladepumpe 2</td>
</tr>
<tr>
<td>X2.8</td>
<td>Warmwasserladepumpe</td>
</tr>
<tr>
<td>X2.9</td>
<td>Quellenpumpe / Abtauen</td>
</tr>
<tr>
<td>X2.10</td>
<td>Störausgang</td>
</tr>
<tr>
<td>X2.11</td>
<td>2.Wärmeerzeuger Warmwasser</td>
</tr>
<tr>
<td>X2.12</td>
<td>2.Wärmeerzeuger Heizung</td>
</tr>
<tr>
<td>X2.13</td>
<td>Kühlen</td>
</tr>
<tr>
<td>X2.14</td>
<td>Mischer Heizkreis 2</td>
</tr>
<tr>
<td>X2.15</td>
<td>Mischer Heizkreis 3</td>
</tr>
<tr>
<td>X2.16</td>
<td>Solarpumpe</td>
</tr>
</tbody>
</table>
Beim Service vertreten wir feste Standpunkte

Unseren Service erreichen Sie in der Zeit von Montag bis Donnerstag von 7:15 bis 18:00 Uhr und Freitag von 7:15 bis 17:00 Uhr.

Info-Center-Verkauf
Tel. 05531 702-110
Fax 05531 702-95108
info-center@stiebel-eltron.de

Ersatzteil-Verkauf
Tel. 05531 702-120
Fax 05531 702-95335
ersatzteile@stiebel-eltron.de

Kundendienst
Tel. 05531 702-111
Fax 05531 702-95890
kundendienst@stiebel-eltron.de

VERTRIEBSZENTREN

WEST
Max-Planck-Ring 33 | 46049 Oberhausen
Tel. 0208 88215-10 | Fax 0208 88215-188
oberhausen@stiebel-eltron.de

NORD
Georg-Heyken-Straße 4a | 21147 Hamburg
Tel. 040 752018-10 | Fax 040 752018-88
hamburg@stiebel-eltron.de

OST
Magdeborner Straße 3 | 04416 Markkleeberg (Leipzig)
Tel. 034297 985-10 | Fax 034297 985-188
leipzig@stiebel-eltron.de

MITTE
Rudolf-Diesel-Straße 18 | 65760 Eschborn
Tel. 06173 602-10 | Fax 06173 602-38
frankfurt@stiebel-eltron.de

SÜD | Bayern
Gutenstetter Str. 10 | 90449 Nürnberg
Tel. 0911 656775-10 | Fax 0911 656775-88
Nuernberg@stiebel-eltron.de

SÜD | Baden-Württemberg
Motorstraße 39 | 70499 Stuttgart
Tel. 0711 98867-10 | Fax 0711 98867-88
stuttgart@stiebel-eltron.de

STIEBEL ELTRON GmbH & Co. KG | Dr.-Stiebel-Straße 33
37603 Holzminden | www.stiebel-eltron.de