

Climate Control

IMI Heimeier

Thermostat-Dreiwege-Ventilunterteil

Thermostat-Ventilunterteileohne Voreinstellung, mit automatischer
Bypass-Steuerung

Thermostat-Dreiwege-Ventilunterteil

Die Thermostat-Dreiwege-Ventilunterteile werden in Zweirohr-Pumpenheizungsanlagen eingesetzt. Für den Einsatz in Einrohr-Pumpenheizungsanlagen ist ein Umrüst-Thermostat-Oberteil erhältlich. Bei gleichzeitigem Schließen fast aller Ventile bauen sich zusätzliche Drücke in der Heizungsanlage auf. Sperrt das Dreiwegeventil den Heizkörpervorlauf ab, wird der Bypass zum Rücklauf voll geöffnet. Zusätzliche Drücke werden vermieden und der Druck annähernd konstant gehalten. Der Bypass kann mit dem entsprechenden Bypass T-Stück am Heizkörper-Rücklauf angeschlossen werden.

Hauptmerkmale

Zur Vermeidung von zusätzlichem Differenzdruck

Durch automatische Bypass-Steuerung

Mit Bypass-T-Stück Für den einfachen Anschluss an den Rücklauf Doppelte O-Ring-Abdichtung Für langlebigen und wartungsfreien Betrieb

Gehäuse aus Rotguss Korrosionsbeständig und sicher

Technische Beschreibung

Anwendungsbereich:

Zweirohr- oder Einrohr Pumpenheizungsanlagen

Funktionen:

Regeln Absperren Vermeidung

Vermeidung von zusätzlichem

Differenzdruck Sicherstellung von

Mindestumlaufwassermengen

Dimensionen:

DN 15

Nenndruck:

PN 10

Temperatur:

Max. Betriebstemperatur: 120 °C, mit Bauschutzkappe oder Stellantrieb 100 °C. Min. Betriebstemperatur: –10 °C.

Werkstoffe:

Ventilgehäuse: korrosionsbeständiger

Rotguss

Bypass T-Stück: Messing O-Ringe: EPDM Ventilteller: EPDM Druckfeder: Edelstahl

Thermostat-Oberteil: Messing

Spindel: Niro-Stahlspindel mit doppelter O-Ring-Abdichtung. Der äußere O-Ring ist unter Druck auswechselbar.

Oberflächenbehandlung:

Ventilgehäuse und Anschlussverschraubung vernickelt.

Kennzeichnung:

THE und Durchflussrichtungspfeil. Bauschutzkappe schwarz.

Rohranschluss:

Das Gehäuse des Ventilunterteiles bzw. des Bypass T-Stückes ist ausgelegt für den Anschluss an Gewinderohr, oder in Verbindung mit Klemmverschraubungen an Kupfer- Präzisionsstahl- oder Verbundrohr.

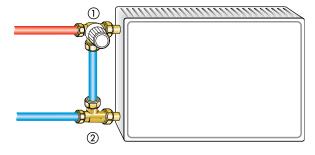
Anschluss für Thermostat-Köpfe und Stellantriebe:

IMI Heimeier M30x1,5

Aufbau

- 1. Ventilgehäuse aus korrosionsbeständigem Rotguss
- 2. Bypassbohrung mit Regulierteller
- 3. Bypassanschluss

Anwendung


Die Thermostat-Dreiwege-Ventilunterteile werden in Zweirohr-Pumpenheizungsanlagen eingesetzt. Für den Einsatz in Einrohr-Pumpenheizungsanlagen ist ein Umrüst-Thermostat-Oberteil erhältlich.

Bei gleichzeitigem Schließen fast aller Ventile bauen sich zusätzliche Drücke in der Heizungsanlage auf. Sperrt das IMI Heimeier Dreiwegeventil den Heizkörpervorlauf ab, wird der Bypass zum Rücklauf voll geöffnet. Zusätzliche Drücke werden vermieden und der Druck annähernd konstant gehalten. Der Gesamtdurchfluss des Dreiwege-Ventilunterteiles liegt bei einem Kv-Wert von 1,45 m³/h (siehe Kurve 2, Diagramm). Pro Heizkreis ist 1 Dreiwegeventil vorzusehen. Bei Normalanlagen etwa alle 18 kW.

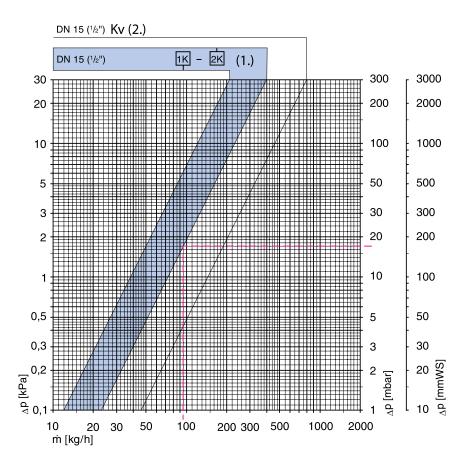
Für Umlauf-Gaswasserheizer mit bestimmter Mindestumlaufmenge ist die Anzahl der Dreiwegeventile ebenfalls aus Kurve 2 zu entnehmen.

Kurve 1 bzw. die Kv-Werte der verschiedenen Regeldifferenzen dienen zur Druckverlustbestimmung bei vorgegebenem Heizkörper-Massenstrom. Die Ventilunterteile können entspr. EnEV bzw. DIN V 4701-10 von z. B. 1 K bis 2 K Regeldifferenz ausgelegt werden und ermöglichen dabei ein breites Durchflussspektrum (technische Daten/Diagramm). Wählen Sie für den Ventileinbau möglichst den von der Pumpe entferntesten Punkt. Ideale Einbauorte sind Flur- oder Badezimmer.

Anwendungsbeispiel

- 1. Thermostat-Dreiwege-Ventilunterteil
- 2. Bypass-T-Stück

Hinweise


– Die Zusammensetzung des Wärmeträgermediums sollte zur Vermeidung von Schäden und Steinbildung in Warmwasserheizanlagen der VDI Richtlinie 2035 entsprechen. Für Industrie- und Fernwärmeanlagen ist das VdTÜV-Merkblatt 1466/AGFW-Arbeitsblatt FW 510 zu beachten. Im Wärmeträgermedium enthaltene Mineralöle bzw. mineralölhaltige Schmierstoffe jeder Art führen zu starken Quellerscheinungen und in den meisten Fällen zum Ausfall von EPDM-Dichtungen. Beim Einsatz von nitritfreien Frost- und Korrosionsschutzmitteln auf der Basis von Ethylenglykol sind die entsprechenden Angaben, insbesondere über die Konzentration der einzelnen Zusätze, den Unterlagen des Frost- und Korrosionsschutzmittel-Herstellers zu entnehmen.

- Stark verschmutzte Bestandsanlagen vor dem Austauch von Thermostatventilen spülen.
- Die Thermstat-Ventilunterteile passen zu IMI Heimeier Thermostat-Köpfen und IMI Heimeier oder IMI TA thermischen bzw. motorischen Stellantrieben. Die optimale Abstimmung der Komponenten untereinander gewährleistet ein Höchstmaß an Sicherheit. Bei Verwendung von Stellantrieben anderer Hersteller ist zu beachten, dass deren Stellkraft im Schließbereich auf Thermostat-Ventilunterteile mit weichdichtenden Ventiltellern angepasst ist.

Technische Daten

Diagramm, Dreiwege-Ventilunterteil mit Thermostat-Kopf

Dreiwege-Ventil- unterteil mit Thermostat-Kopf		Kv Regeldifferenz xp [K]		Kv gesamt¹)	_	r Differenzdruck, bo I noch geschlosser Δp [bar]	
	1,0	1,5	2,0		ThKopf	EMO T-TM/NC EMOtec/NC TA-TRI	EMO T/NO EMOtec/NO TA-Slider 160
DN 15 (1/2")	0,38	0,55	0,73	1,45	1,0	2,0	3,5

¹⁾ gesamter Kv-Wert für Heizkörper und Bypass. Kv/Kvs = m³/h bei einem Druckverlust von 1 bar.

Berechnungsbeispiel

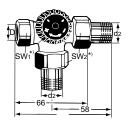
Gesucht:

Druckverlust Thermostat-Dreiwege-Ventilunterteil bei 2 K Regeldifferenz

Gegeben:

Wärmestrom Q = 1660 W

Temperaturspreizung $\Delta t = 15 \text{ K } (70/55^{\circ}\text{C})$


Lösung:

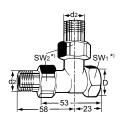
Massenstrom m = Q / (c \cdot Δt) = 1660 / (1,163 \cdot 15) = 95 kg/h

Druckverlust aus Diagramm $\Delta p_v = 17 \text{ mbar}$

Artikel

Thermostat-Dreiwege-Ventilunterteil

Anschluss am Heizkörper links


Bypass- anschluss	DN	D	d2	Kv Heizkörper [xp] 1 K / 2 K ¹⁾	Kv gesamt ²⁾	EAN	Artikel-Nr.
DN 15 (1/2") Schraubnippel	15	Rp1/2	R1/2	0,38 / 0,73	1,45	4024052221714	4151-02.000

Thermostat-Dreiwege-Ventilunterteil

Anschluss am Heizkörper rechts

Bypass- anschluss	DN	D	d2	Kv Heizkörper [xp] 1 K / 2 K 1)	Kv gesamt ²⁾	EAN	Artikel-Nr.
DN 15 (1/2") Schraubnippel	15	Rp1/2	R1/2	0,38 / 0,73	1,45	4024052221615	4150-02.000

Bypass-T-Stück

Anschluss am Heizkörper links oder rechts

Bypass- anschluss	DN	D	d2	EAN	Artikel-Nr.
DN 15 (1/2") Schraubnippel	15	Rp1/2	R1/2	4024052222117	4154-02.000

- *) SW1: 27mm, SW2: 30mm
- 1) Verteilverhältnis bei 2,0 K ca. 50%.
- 2) gesamter Kv-Wert für Heizkörper und Bypass.

 $\mathsf{Kvs} = \mathsf{m}^3/\mathsf{h}$ bei einem Druckverlust von 1 bar und voll geöffnetem Ventil.

Kv [xp] max. 1 K / 2 K = m^3/h bei einem Druckverlust von 1 bar mit Thermostat-Kopf.

Zubehör

Umrüst-Thermostat-Oberteil

Für den Einsatz des Thermostat-Dreiwege-Ventilunterteiles in Einrohr-Heizungsanlagen. Massenstromverteilung im Auslegungsfall bei 35 % Heizkörperanteil und 65 % Bypassanteil. Kv-Wert gesamt 2,40 [m³/h] (bei 2 K Regeldifferenz).

=3.00	EAN	Artikel-Nr.
4024052217410 4101-03.300	4024052217410	4101-03.300

Klemmverschraubung

für Kupfer- oder Präzisionsstahlrohr. Anschluss Innengewinde Rp 3/8 – Rp 3/4.

Durchflussdiagramm auf Anfrage.

Metallisch dichtend.

Messing vernickelt.

Bei einer Rohrwanddicke von 0,8 – 1 mm sind Stützhülsen einzusetzen. Angaben der Rohrhersteller beachten.

Ø Rohr	DN	EAN	Artikel-Nr.
12	10 (3/8")	4024052174614	2201-12.351
15	15 (1/2")	4024052175017	2201-15.351
16	15 (1/2")	4024052175116	2201-16.351
18	20 (3/4")	4024052175215	2201-18.351

Stützhülse

für Kupfer- oder Präzisionsstahlrohr mit einer Wandstärke von 1 mm. Messing.

Ø Rohr	L	EAN	Artikel-Nr.
12	25,0	4024052127016	1300-12.170
15	26,0	4024052127917	1300-15.170
16	26,3	4024052128419	1300-16.170
18	26,8	4024052128815	1300-18.170

Klemmverschraubung

für Verbundrohr. Messing vernickelt. Anschluss Innengewinde Rp 1/2.

Ø Rohr	EAN	Artikel-Nr.	
16 x 2	4024052138616	1335-16.351	

Anschlussverschraubung

Zum Klemmen von Kunststoff-, Kupfer-, Präzisionsstahl- oder Verbundrohr. Messing vernickelt.

	L	EAN	Artikel-Nr.
G3/4 x R1/2	26	4024052308415	1321-12.083
33/ 1 X 1 X 1/2		102 1002000+10	1021 12.000

Klemmverschraubung

für Kupfer- oder Präzisionsstahlrohr. Anschluss Außengewinde G 3/4. Metallisch dichtend. Messing vernickelt. Bei einer Rohrwanddicke von 0,8 –1 mm sind Stützhülsen einzusetzen. Angaben der Rohrhersteller beachten.

Ø Rohr	EAN	Artikel-Nr.
12	4024052214211	3831-12.351
15	4024052214617	3831-15.351
16	4024052214914	3831-16.351
18	4024052215218	3831-18.351

Klemmverschraubung

für Kupfer- oder Präzisionsstahlrohr. Anschluss Außengewinde G 3/4. Weich dichtend. Messing vernickelt.

Ø Rohr	EAN	Artikel-Nr.
15	4024052515851	1313-15.351
18	4024052516056	1313-18.351

Klemmverschraubung

für Kunststoffrohr. Anschluss Außengewinde G 3/4. Messing vernickelt.

Ø Rohr	EAN	Artikel-Nr.
14x2	4024052134618	1311-14.351
16x2	4024052134816	1311-16.351
17x2	4024052134915	1311-17.351
18x2	4024052135110	1311-18.351
20x2	4024052135318	1311-20.351

Klemmverschraubung

für Verbundrohr. Anschluss Außengewinde G 3/4. Messing vernickelt.

Ø Rohr	Artikel-Nr.
16x2	1331-16.351

Weiteres Zubehör siehe Prospekt "Zubehör und Ersatzteile für Thermostat-Ventilunterteile".

