ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804+A1

Owner of the Declaration	dormakaba International Holding GmbH
Publisher	Institut Bauen und Umwelt e.V. (IBU)
Programme holder	Institut Bauen und Umwelt e.V. (IBU)
Declaration number	EPD-DOR-20200117-CBAD9-EN
Issue date	24/08/2020
Valid to	23/08/2025

RTS 85, RTS 88, BTS 84 Series door closers dormakaba

www.ibu-epd.com | https://epd-online.com

General Information

dormakaba

Programme holder

IBU – Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany

Declaration number

EPD-DOR-20200117-CBAD9-EN

This declaration is based on the product category rules: Building Hardware products, 01/08/2021

(PCR checked and approved by the SVR)

Issue date

24/08/2020

Valid to 23/08/2025

RTS 85, RTS 88, BTS 84 Series door closers

Owner of the declaration

dormakaba International Holding GmbH DORMA Platz 1 58256 Ennepetal Germany

Declared product / declared unit

The declaration represents one concealed door closer unit.

Scope:

The declaration and the background LCA represent dormakaba's RTS 85, RTS 88, and BTS 84 Series Concealed Door Closers. Raw materials and components are provided by suppliers and shipped to dormakaba, where the closers are manufactured and assembled at the dormakaba facility in Suzhou, China. The RTS and BTS differ in how they are mounted to the door (floor versus frame), but are otherwise identical products. The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

The EPD was created according to the specifications of EN 15804+A1. In the following, the standard will be simplified as *EN 15804*.

Verification

The standard EN 15804 serves as the core PCR Independent verification of the declaration and data according to ISO 14025:2011

internally X

externally

ten . A A A A

Dipl.-Ing. Hans Peters (Chairman of Institut Bauen und Umwelt e.V.)

Florian Pronold (Managing Director Institut Bauen und Umwelt e.V.)

Dr.-Ing. Wolfram Trinius, (Independent verifier)

Product

Product description/Product definition

dormakaba's RTS 85, RTS 88, and BTS 84 Series concealed door closers offer a solution for installations where door control must be provided without disturbing aesthetic appearance or compromising durability. They can be installed a number of different configurations, including in standard, narrow or wide door frames, as well as with left-hand or right-hand single- or double-action mounting. The closers are designed for a wide variety of doors and represent an excellent alternative to surface-mounted closers. A comprehensive selection of accessories ensures that they can be used successfully with a wide variety of door constructions and floor coverings. Product benefits include:

- For the trade: Just one body for all types of fixing. Low inventory and minimal stocking requirements thanks to unit packs for closer bodies and accessories. Reliability and a dependable design provide long-lasting performance without the visual obtrusiveness of a surface-mounted closer.
- For the installer: Easy installation allows installers to be more productive with their time, especially because the majority of the preparation can be done prior to the installation of the unit. No floor preparation is necessary in the case of frame-mounted closers. Additionally, the "zero" position for double action doors is easy to adjust and closers are available with a comprehensive range of accessories.
- For the architect: Provides an aesthetically pleasing solution, especially for toughened glass doors, and is ideal for shop fitting applications.
- For the user: Avoids cluttering of door appearance, and backcheck prevents door contact with the frame. The closing mechanism allows for smooth performance with adjustable speed and is adjustable to accommodate traffic and weather changes.

For the use and application of the product the respective national provisions at the place of use apply. The standards which can be applied are the following:

- EN 1154
- ANSI/BHMA A156.4

Product variants with mechanical hold-open are not suitable for use on Fire doors.

Application

The RTS 85, RTS 88, and BTS 84 Series offer an aesthetically pleasing solution and are well-suited for use in moveable partitions and toughened glass doors, along with aluminum, wood, and hollow metal frames. The closers can be used for

LCA: Calculation rules

Declared Unit

The declared unit of this analysis is one concealed door closer.

Name	Value	Unit
Declared unit (1 closer)	1	piece/product
Conversion factor to 1 kg	0.2268	-
Mass of declared Product	4.41	kg

System boundary

Type of EPD: cradle to gate - with options.

The Environmental Product Declaration refers to the production

retrofit applications to replace surface-mounted closers. They are not intended for use in fire or smoke doors.

Technical Data

The concealed door closers employ a cam and roller mechanism, and are capable of controlling interior and exterior doors. They are non-handed, with a single closer for both single and double-acting doors. Users can adjust closing speed and optionally take advantage of mechanical hold-open points. The plant in Suzhou is certified to the quality management system *ISO 9001*, which ensures consistent quality of dormakaba's products. The Environmental Management System in the Suzhou production is certified to *ISO 14001*.

Name	Value	Unit
Length	323	mm
Width	90	mm
Height	38	mm
Weight	4.4	kg
Test standards and methods	/EN 1154/	

Performance data of the product with respect to its characteristics in accordance with the relevant technical provision which can be applied are mentioned above.

Base materials/Ancillary materials

Name	Value	Unit
Iron	51	%
Steel	39	%
Oil	6	%
Aluminum	3.5	%
others	0.5	%

The products include partial articles which contain substances listed in the *Candidate List* of *REACH* Regulation 1907/2006/EC (date: 15.01.2019) exceeding 0.1 percentage by mass in the alloy:

· Lead (Pb): 7439-290-1 (CAS-No.)

The *Candidate List* can be found on the *ECHA* website address: https://echa.europa.eu/de/home.

Reference service life

The reference service life of dormakaba's RTS 85, RTS 88, BTS 84 concealed door closers depends on the traffic pattern and degree of usage of the door. The reference service life amounts for 20 years.

stage (A1-A3), transport from the gate to construction site (A4), the end of life stage (C3) and indicates the recycling potential which is declared in the module "benefits and loads beyond the product system boundary" (D).

In line with the PCR, A5 is declared to ensure the export of biogenic CO2 from renewable packaging materials.

Modules A1 to A3 include the provision and processing of raw materials as well as the processing of input materials, the transport to manufacturer and production site. Module C3 includes the incineration of plastics for energy recovery. Module D comprises the recycling of metals and gives

the recycling potentials as well as potential benefits from energy substitution.

A5 is declared to ensure the export of biogenic CO2 that is incorporated in the used packaging materials (paper). Potential benefits from the incineration of packaging materials are also declared in module D. The incineration processes in the End-of-Life are based on European datasets. The recycling processes in the End-of-Life are based on European and Global datasets.

Geographic Representativeness

LCA: Scenarios and additional technical information

Additional technical information for the declared modules.

Transport to the building site (A4)

Name	Value	Unit
Litres of fuel truck (per piece)	0.009	l/100km
Transport distance (ship)	0 - 25800	km
Transport distance (truck)	10 - 5000	km
Average transport distance (truck)	1000	km
Capacity utilisation (including empty runs)	85	%
Average transport distance (ship)	19600	km

In order to represent dormakaba's global distribution network, a sales-weighted average is used to model transport to the building site. The table for Module A4 shows both weighted average transportation distance (given regional concealed closer sales), which is used in the analysis, along with the variation in that distance.

Land or region, in which the declared product system is manufactured, used or handled at the end of the product's lifespan: Unknown

Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to *EN 15804* and the building context, respectively the product-specific characteristics of performance, are taken into account.

Installation into the building (A5)

Name	Value	Unit
Output substances following waste treatment on site (packaging)	0.514	kg

Reference service life

Name	Value	Unit
Life Span according to the manufacturer	20	а

End of life (C1-C4)

Name	Value	Unit		
Recycling	4.41	kg		

Reuse, recovery and/or recycling potentials (D), relevant scenario information

Name	Value	Unit
Recycling	100	%

Collection rate is 100%.

F

LCA: Results

LOA. Nesulis														
DESCRIPTION OF TH RELEVANT)	E SYST	ЕМ ВС	OUNDA	RY (X =	INCLU	DED I	N LCA; I	MND =	MODU	LE NOT	DECLA	ARED;	MNR = I	MODULE NOT
Product stage	Constr process			Use stage					E	End of li	Benefits and loads beyond the system boundaries			
	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recycling- potential
A1 A2 A3	A4	A5	B1	B2	B 3	B4	B5	B6	B7	C1	C2	C3	C4	D
X X X	Х	Х	MND	MND	MNR	MNF	MNR	MND	MND	MND	MND	Х	MND	Х
RESULTS OF THE LC	A - EN\	/IRON			CT acco	rdinc	to EN 1	5804+4	1: 1 c	loser (4.	41ka)			
Parameter							Unit	A1-		A4		\ 5	C3	D
Global warming potential (GV	VP)						kg CO ₂ eq	1.14		1.47E+00		3E-01	2.23E-0	
Depletion potential of the stra		ozone la	ver (ODP)	1			g CFC11 ec			1.12E-16	_	5E-16	2.38E-1	
Acidification potential of land			je: (02.)	,			kg SO ₂ eq	3.26					4.9E-05	
Eutrophication potential (EP)		. (,)							4.37E-03			1.06E-0		
,	nhorio oza	no nhoto	ahamiaal	ovidanta (
Abiotic depletion potential for	•			chemical oxidants (POCP)			kg Ethen eq 4.09E-03 kg Sb eq 7.46E-05		1.74E-03 4.81E-08	1.01E-05 1.43E-08		3.77E-0 3.85E-0		
			\				MJ	1.31E+02		1.9E+01		2E-00	1.51E-0	
Abiotic depletion potential for fossil resources (ADPF) MJ RESULTS OF THE LCA - INDICATORS TO DESCRIBE RESOURCE US														
Parameter				JEGON			Unit	A1		A4	- 1	1005	C3	D
Renewable primary energy as energy carrier (PERE)					MJ	2.9E	+01	6.58E-02	3.81	E+00	4.09E-0	2 1.03E+00		
Renewable primary energy re	Renewable primary energy resources as material utilization (PERM)					MJ	MJ 3.77E+00		0	-3.77	7E+00	0	0	
Total use of renewable prima	ry energy	resource	s (PERT)				MJ	3.28	E+01	6.58E-02	4.04	4E-02	4.09E-0	2 1.03E+00
Non renewable primary energ	gy as enei	rgy carrie	r (PENRE)			MJ	1.31	E+02	1.91E+01	2.36	6E-01	7E+00	-2.27E+01
Non renewable primary energ							MJ	6.83	E+00	0		0	-6.83E+0	0 0
Total use of non renewable p	rimary ene	ergy reso	urces (PE	NRT)			MJ	1.38	E+02	1.91E+01	2.36	6E-01	1.69E-0	1 -2.27E+01
Use of secondary material (S	,						kg	3.68		0		0	0	0
Use of renewable secondary		,				MJ 0			0	_	0	0	0	
Use of non renewable second	dary fuels	(NRSF)						MJ 0		0	0		0	0
Use of net fresh water (FW)							m ³ 5.59E-02			3.14E-04 2.13E-03		9.96E-0	4 -3.21E-03	
RESULTS OF THE LC 1 closer (4.41kg)	A – WA	STE C	ATEGO	RIES A	ND OUT	PUT	FLOWS	accord	ling to	EN 1580)4+A1:			
Parameter							Unit	A1-	-A3	A4	A	\ 5	C3	D
Hazardous waste disposed (H	/						kg	6.12		2.47E-09	-	'E-10	1.53E-0	9 -2.13E-08
Non hazardous waste dispos		D)					kg	9.69		1.41E-04		9E-02	2.71E-0	
Radioactive waste disposed (kg	2.6E		6.5E-06		7E-05	6.95E-0	
	Components for re-use (CRU)						kg)	0		0	0	0
Materials for recycling (MFR)							kg	-)	0		0	1.22E+0	
Materials for energy recovery							kg	(0	-	0	0	0
Exported electrical energy (E Exported thermal energy (EE							MJ MJ	(0	_	E+00 +00	2.48E-0	
Lyborieu mermai energy (EE							IVIJ		,	U	2E	+00	6.33E-0	

PM = Potential incidence of disease due to PM emissions;

IR = Potential Human exposure efficiency relative to U235;

ETP-fw= Potential comparative Toxic Unit for ecosystems;

HTP-c= Potential comparative Tocix Unit for humans (cancerogenic);

HTP-nc= Potential comparative Toxic Unit for humans (not cancerogenic);

SQP= Potential soil quality index

References

ANSI/BHMA A156.4 ANSI/BHMA A156.4 - 2013, Door controls - Closers Candidate List of REACH Regulation /1907/2006/EC (date: 16.01.2020)

ECHA

European Chemicals Agency

EN 1154

EN 1154:2003-04, Building hardware - Controlled door closing devices

EN 15804

EN 15804:2012-04 Sustainability of construction works -Environmental product declarations - Core rules for the product category of construction products

GaBi ts

thinkstep AG, GaBi Software System and Database for Life Cycle Engineering (SP39). 1992-2019 Copyright thinkstep AG

ISO 9001

Quality Management System - ISO 9001:2015

ISO 14001

Environmental Management System - ISO 14001:2015

ISO 14040

EN ISO 14040:2006, Environmental management - Life cycle assessment - Principles and framework

ISO 14044

EN ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines

PCR Part A

Institut Bauen und Umwelt e.V., Product Category Rules for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report

PCR Part B

PCR - Part B: Requirements on the EPD for Building Hardware products, version 08/2021, Institut Bauen und Umwelt e.V., www.ibu-epd.com.

REACH

Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), Regulation (EC) No 1907/2006

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com

Programme holder

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com

Author of the Life Cycle Assessment

Sphera Solutions GmbH Hauptstraße 111- 113 70771 Leinfelden-Echterdingen Germany +49 711 341817-0 info@sphera.com www.sphera.com

dormakaba 🚧

Owner of the Declaration

dormakaba International Holding GmbH DORMA Platz 1 58256 Ennepetal Germany +49 2333 793-0 info.de@dormakaba.com www.dormakaba.com