ENVIRONMENTAL PRODUCT DECLARATION as per ISO 14025 and EN 15804+A2 Owner of the Declaration dormakaba International Holding GmbH Publisher Institut Bauen und Umwelt e.V. (IBU) Programme holder Institut Bauen und Umwelt e.V. (IBU) Declaration number EPD-DOR-20240125-CBA1-EN Issue date 15/07/2024 Valid to 14/07/2029 # Kerberos Tripod Barrier-E01 dormakaba Institut Bauen und Umwelt e.V. www.ibu-epd.com | https://epd-online.com #### **General Information Kerberos Tripod Barrier-E01** dormakaba Owner of the declaration Programme holder dormakaba International Holding GmbH IBU - Institut Bauen und Umwelt e.V. DORMA Platz 1 Hegelplatz 1 10117 Berlin 58256 Ennepetal Germany Germany **Declaration number** Declared product / declared unit EPD-DOR-20240125-CBA1-EN 1 piece of the product: Kerberos Tripod Barrier-E01 consisting of the following items: TPB Drive Unit · TPB Housing · Product packaging This declaration is based on the product category rules: Scope: Electronic and physical Access Control Systems, 01/08/2021 This Environmental Product Declaration refers to a specific Kerberos (PCR checked and approved by the SVR) Tripod Barrier-E01 manufactured by dormakaba. The production site is located in Bühl (Germany). Green electricity with Guarantee of Origin (GoO) is being used at this Issue date production site. 15/07/2024 The data represents the year 2024. The owner of the declaration shall be liable for the underlying information Valid to and evidence; the IBU shall not be liable with respect to manufacturer 14/07/2029 information, life cycle assessment data and evidences. The EPD was created according to the specifications of EN 15804+A2. In the following, the standard will be simplified as EN 15804. Verification The standard EN 15804 serves as the core PCR Independent verification of the declaration and data according to ISO 14025:2011 Dipl.-Ing. Hans Peters (Chairman of Institut Bauen und Umwelt e.V.) Florian Pronold (Managing Director Institut Bauen und Umwelt e.V.) Matthias Klingler, (Independent verifier) internally X externally ## **Product** #### Product description/Product definition Kerberos Tripod barriers can be used for access control. They regulate the flow of people with ease, even during the busiest periods of the day. dormakaba tripod barriers are compatible with all types of ID readers and are available in different designs. In emergencies, designs with collapsible bars in both directions create an escape route. The tripod barrier bars can be reset automatically to the normal position by authorized personnel as soon as the emergency is over. For the Kerberos Tripod Barriers, the standards which can be applied are the following: - EN 17352 - EN 50581 - EN 60335-2-103 - EN 61000 - ISO 9001 - ISO 12100 - ISO 13849-1 - ISO 13849-2 - 2011/65/EU (RoHS) - Machinery Directive 2006/42/EG The CE marking takes into account the proof of conformity with the respective harmonized standards based on the legal provisions above. ## **Application** Tripod barriers can be used for access controls and make life easier for reception staff at entrances to office and administrative buildings, industrial installations, banks, authorities and many other places. #### **Technical Data** The Kerberos Tripod Barrier-E01 has following technical properties: | Name | Value | Unit | |---|--------------------|-------------| | Material | Stainless
Steel | AISI
304 | | Power supply max. | 240 | VAC | | Protection class housing | 33 | IP | | Protection class components conduction supply voltage | 43 | IP | Performance data of the product with respect to its characteristics in accordance with the relevant technical provision which can be applied are mentioned above. ## Base materials/Ancillary materials The major material composition including the packaging of the product is listed below: | • | | | |-------------|-------|------| | Name | Value | Unit | | Steel | 78 | % | | Paper | 11 | % | | Plastics | 4 | % | | Aluminum | 4 | % | | Electronics | 3 | % | The Kerberos TPB-E01 includes partial articles which contain substances listed in the *Candidate List of REACH Regulation* 1907/2006/EC (date: 23.01.2024) exceeding 0.1 percentage by mass: no The *Candidate List* can be found on the *ECHA* website address: https:echa.europa.eu/de/home. #### Reference service life The reference service life of the Kerberos Tripod Barrier-E01 amounts to 15 years, depending on the application and frequency of use. For repairs and renewals, suitable spare parts are available. The Tripod barriers are tested and certified to *EN 17352*, meaning they are designed to withstand 4 Mio. cycles. ## LCA: Calculation rules ## **Declared Unit** The declared unit is 1 piece of the product: Kerberos Tripod Barrier-E01 including packaging | Name | Value | Unit | |--------------------------|-------|---------------| | Declared unit | 1 | piece/product | | Mass of declared product | 50.82 | kg | | Mass of packaging | 7,25 | kg | Other declared units are allowed if the conversion is shown transparently. ## System boundary The type of EPD is: cradle to gate with options, modules C1–C4, and module D (A1–A3 + B6 + C + D and additional modules: A4+ A5) #### **Production - Module A1-A3** The product stage includes: — A1, raw material extraction, processing and mechanical treatments, processing of secondary material input (e.g. recycling processes), — A2, transport to the manufacturer, — A3, manufacturing and assembly including provision of all materials, products and energy (green electricity with Guarantee of Origin (GoO)), as well as waste processing up to the end-of-waste state. ## **Construction stage - Modules A4-A5** The construction process stage includes: — A4, transport to the building site; — A5, installation into the building; including provision of all materials, products and energy, as well as waste processing up to the end-of-waste state or disposal of final residues during the construction process stage. #### Use stage - Module B6 The use stage related to the operation of the building includes: — B6, operational energy use ## End-of-life stage- Modules C1-C4 and D The end-of-life stage includes: — C1, de-construction, demolition: — C2, transport to waste processing; — C3, waste processing for reuse, recovery and/or recycling; — C4, disposal; including provision and all transport, provision of all materials, products and related energy and water use. Module D (Benefits and loads beyond the system boundary) includes: — D, recycling potentials, expressed as net impacts and benefits. ## **Geographic Representativeness** Land or region, in which the declared product system is manufactured, used or handled at the end of the product's lifespan: Global ## Comparability Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to *EN 15804* and the building context, respectively the product-specific characteristics of performance, are taken into account. Background database: GaBi, SP40. ## LCA: Scenarios and additional technical information ## Characteristic product properties of biogenic carbon | Name | Value | Unit | |---|-------|---------| | Biogenic carbon content in accompanying packaging | 2.07 | kg
C | ## Transport to the building site (A4) | Name | Value | Unit | |---|---------|---------| | Transport distance | 100 | km | | Capacity utilisation (including empty runs) | 55 | % | | Liters of fuel | 0,00276 | I/100km | The product is transported via truck. The main distribution region is Europe. In order to allow scaling to a specific point of installation 100 km is declared. ## Installation into the building (A5) | Name | Value | Unit | |---------------------------|-------|------| | Waste packaging (paper) | 5,633 | kg | | Waste packaging (plastic) | 1,616 | kg | ## Reference service life | Name | Value | Unit | |---|-------|------| | Life Span according to the manufacturer | 15 | а | ## Operational energy use (B6) | Name | Value | Unit | |------------------------------------|--------|------| | Electricity consumption for 1 year | 74,095 | kWh | | Days per year in use | 365 | days | | On mode per day | 1 | h | | Idle mode per day | 23 | h | | On mode power | 19 | W | | Idle mode power | 8 | W | ## End of life (C1-C4) C1: The product dismantling from the building is done manually without environmental burden. C2: Transport to waste management is 50 km. | Name | Value | Unit | |--|-------|------| | Collected separately waste type waste type | 43.6 | kg | | Recycling | 43.3 | kg | | Energy recovery | 0.2 | kg | | Landfilling | 0.041 | kg | The product is disassembled in a recycling process. Material recycling is then assumed for metals and electronics. The plastic components are assumed to be incinerated with energy recovery. Minor proportions of residues arising from the recycling process are landfilled. Region for the End of Life is: Europe. ## Reuse, recovery and/or recycling potentials (D), relevant scenario information | Name | Value | Unit | |-----------|-------|------| | Recycling | 100 | % | The collection rate is 100 %. ## LCA: Results ## DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; MND = MODULE OR INDICATOR NOT DECLARED; MNR = MODULE NOT RELEVANT) | Product stage Construction process stage | | | | | | | U | Jse stag | е | | | E | End of li | fe stage |) | Benefits and loads beyond the system boundaries | |--|-----------|---------------|-------------------------------------|----------|-----|-------------|--------|-------------|---------------|---------------------------|-----------------------|-------------------------------|-----------|------------------|----------|---| | Raw material
supply | Transport | Manufacturing | Transport from the gate to the site | Assembly | Use | Maintenance | Repair | Replacement | Refurbishment | Operational energy
use | Operational water use | De-construction
demolition | Transport | Waste processing | Disposal | Reuse-
Recovery-
Recycling-
potential | | A 1 | A2 | A3 | A4 | A5 | B1 | B2 | В3 | B4 | B5 | В6 | B7 | C1 | C2 | C3 | C4 | D | | Χ | Χ | Х | Х | Х | MND | Χ | MNR | MNR | MNR | Х | MND | Х | Х | Χ | Χ | X | | RESULTS (| RESULTS OF THE LCA - ENVIRONMENTAL IMPACT according to EN 15804+A2: 1 piece Kerberos TPB-E01 | | | | | | | | | | | | |-------------------|--|-----------|----------|----------|----|----------|----|----------|----------|----------|-----------|--| | Parameter | Unit | A1-A3 | A4 | A5 | B2 | В6 | C1 | C2 | C3 | C4 | D | | | GWP-total | kg CO ₂ eq | 3.14E+02 | 4.44E-01 | 1.21E+01 | 0 | 4.5E+02 | 0 | 1.85E-01 | 5.08E-01 | 6.26E-04 | -1.62E+02 | | | GWP-fossil | kg CO ₂ eq | 3.2E+02 | 4.25E-01 | 4.31E+00 | 0 | 4.47E+02 | 0 | 1.77E-01 | 5.08E-01 | 6.22E-04 | -1.63E+02 | | | GWP-
biogenic | kg CO ₂ eq | -6.19E+00 | 2E-02 | 7.79E+00 | 0 | 1.49E+00 | 0 | 8E-03 | 1.18E-05 | 2.13E-06 | 7.09E-01 | | | GWP-luluc | kg CO ₂ eq | 4.52E-01 | 1.01E-05 | 3.64E-04 | 0 | 6.48E-01 | 0 | 4.21E-06 | 2.87E-05 | 1.79E-06 | -2.97E-01 | | | ODP | kg CFC11 eq | 5.23E-10 | 4.49E-17 | 3.51E-15 | 0 | 9.84E-12 | 0 | 1.87E-17 | 2.56E-16 | 2.31E-18 | -9.92E-11 | | | AP | mol H ⁺ eq | 1.39E+00 | 4.25E-04 | 3E-03 | 0 | 9.88E-01 | 0 | 1.77E-04 | 9.05E-05 | 4.46E-06 | -7.15E-01 | | | EP-
freshwater | kg P eq | 5.13E-04 | 9.09E-08 | 6.12E-07 | 0 | 1E-03 | 0 | 3.78E-08 | 4.09E-08 | 1.07E-09 | -1.4E-04 | | | EP-marine | kg N eq | 2.02E-01 | 1.35E-04 | 9.73E-04 | 0 | 2.19E-01 | 0 | 5.63E-05 | 2.04E-05 | 1.15E-06 | -1.11E-01 | | | EP-terrestrial | mol N eq | 2.2E+00 | 2E-03 | 1.3E-02 | 0 | 2.31E+00 | 0 | 6.25E-04 | 4.12E-04 | 1.26E-05 | -1.2E+00 | | | POCP | kg NMVOC
eq | 6.09E-01 | 3.83E-04 | 3E-03 | 0 | 6.01E-01 | 0 | 1.59E-04 | 5.65E-05 | 3.48E-06 | -3.28E-01 | | | ADPE | kg Sb eq | 1.33E-02 | 1.27E-08 | 5.12E-08 | 0 | 1.3E-04 | 0 | 5.3E-09 | 3.52E-09 | 5.59E-11 | -5E-03 | | | ADPF | MJ | 4.19E+03 | 6.02E+00 | 4.43E+00 | 0 | 7.87E+03 | 0 | 2.51E+00 | 2.36E-01 | 8E-03 | -2.03E+03 | | | WDP | m ³ world eq
deprived | 8.82E+01 | 8.32E-04 | 1.41E+00 | 0 | 9.75E+01 | 0 | 3.46E-04 | 5.2E-02 | 6.52E-05 | -6.17E+01 | | GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential; POCP = Formation potential of tropospheric ozone photochemical oxidants; ADPE = Abiotic depletion potential for non-fossil resources; ADPF = Abiotic depletion potential for fossil resources; WDP = Water (user) deprivation potential) | RESULTS OF THE LCA - INDICATORS TO DESCRIBE RESOURCE USE according to EN 15804+A2: 1 piece Kerberos TPB-E01 | | | | | | | | | | | | | |---|----------------|----------|----------|-----------|----|----------|----|----------|-----------|----------|-----------|--| | Parameter | Unit | A1-A3 | A4 | A5 | B2 | B6 | C1 | C2 | C3 | C4 | D | | | PERE | MJ | 9.86E+02 | 1.9E-02 | 6.85E+01 | 0 | 3.49E+03 | 0 | 8E-03 | 6.1E-02 | 1E-03 | -4.8E+02 | | | PERM | MJ | 6.76E+01 | 0 | -6.76E+01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | PERT | MJ | 1.05E+03 | 1.9E-02 | 9.53E-01 | 0 | 3.49E+03 | 0 | 8E-03 | 6.1E-02 | 1E-03 | -4.8E+02 | | | PENRE | MJ | 4.12E+03 | 6.03E+00 | 7.39E+01 | 0 | 7.87E+03 | 0 | 2.51E+00 | 7.99E+00 | 8E-03 | -2.03E+03 | | | PENRM | MJ | 7.72E+01 | 0 | -6.95E+01 | 0 | 0 | 0 | 0 | -7.76E+00 | 0 | 0 | | | PENRT | MJ | 4.2E+03 | 6.03E+00 | 4.43E+00 | 0 | 7.87E+03 | 0 | 2.51E+00 | 2.36E-01 | 8E-03 | -2.03E+03 | | | SM | kg | 2.25E+01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | RSF | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | NRSF | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | FW | m ³ | 3.43E+00 | 3.41E-05 | 3.3E-02 | 0 | 4.03E+00 | 0 | 1.42E-05 | 1E-03 | 2.06E-06 | -2.55E+00 | | PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water # RESULTS OF THE LCA – WASTE CATEGORIES AND OUTPUT FLOWS according to EN 15804+A2: 1 piece Kerberos TPB-E01 | Parameter | Unit | A1-A3 | A4 | A5 | B2 | В6 | C1 | C2 | C3 | C4 | D | |-----------|------|----------|----------|----------|----|----------|----|----------|----------|----------|-----------| | HWD | kg | 2.03E-05 | 5.85E-10 | 1.1E-08 | 0 | 3.26E-06 | 0 | 2.43E-10 | 8.98E-10 | 1.24E-10 | 2.46E-07 | | NHWD | kg | 2.52E+01 | 6.17E-04 | 6.77E-01 | 0 | 5.58E+00 | 0 | 2.56E-04 | 5.3E-02 | 4.1E-02 | -1.79E+01 | | RWD | kg | 6.2E-02 | 6.47E-06 | 2.03E-04 | 0 | 1.19E+00 | 0 | 2.69E-06 | 8.75E-06 | 9.29E-08 | -3.4E-02 | | CRU | kg | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | MFR | kg | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4.2E+01 | 0 | 0 | | MER | kg | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | EEE | MJ | 0 | 0 | 1.97E+01 | 0 | 0 | 0 | 0 | 1.17E+00 | 0 | 0 | | EET | MJ | 0 | 0 | 3.94E+01 | 0 | 0 | 0 | 0 | 2.68E+00 | 0 | 0 | |-----|----|---|---|----------|---|---|---|---|----------|---|---| HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported thermal energy ## RESULTS OF THE LCA – additional impact categories according to EN 15804+A2-optional: 1 piece Kerberos TPB-E01 | Parameter | Unit | A1-A3 | A4 | A5 | B2 | В6 | C1 | C2 | C3 | C4 | D | |-----------|-------------------|----------|----------|----------|----|----------|----|----------|----------|----------|-----------| | РМ | Disease incidence | 2.16E-05 | 2.24E-09 | 2.17E-08 | 0 | 8.29E-06 | 0 | 9.3E-10 | 1.16E-09 | 5.52E-11 | -1.42E-05 | | IR | kBq U235 eq | 7.72E+00 | 9.25E-04 | 2.7E-02 | 0 | 1.96E+02 | 0 | 3.85E-04 | 7.88E-04 | 9.56E-06 | -5.96E+00 | | ETP-fw | CTUe | 2.23E+03 | 4.27E+00 | 1.91E+00 | 0 | 3.36E+03 | 0 | 1.78E+00 | 8.8E-02 | 5E-03 | -1.04E+03 | | HTP-c | CTUh | 4.73E-05 | 8.03E-11 | 1.25E-10 | 0 | 9.29E-08 | 0 | 3.34E-11 | 7.66E-12 | 6.91E-13 | -3.14E-07 | | HTP-nc | CTUh | 5.15E-06 | 3.44E-09 | 9.01E-09 | 0 | 3.42E-06 | 0 | 1.43E-09 | 7.75E-10 | 7.62E-11 | -8.44E-07 | | SQP | SQP | 1.59E+03 | 1.5E-02 | 1.24E+00 | 0 | 2.51E+03 | 0 | 6E-03 | 7.1E-02 | 2E-03 | -2.79E+02 | PM = Potential incidence of disease due to PM emissions; IR = Potential Human exposure efficiency relative to U235; ETP-fw = Potential comparative Toxic Unit for ecosystems; HTP-c = Potential comparative Toxic Unit for humans (cancerogenic); HTP-nc = Potential comparative Toxic Unit for humans (not cancerogenic); SQP = Potential soil quality index Disclaimer 1 – for the indicator "Potential Human exposure efficiency relative to U235". This impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure or radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, radon and from some construction materials is also not measured by this indicator. Disclaimer 2 – for the indicators "abiotic depletion potential for non-fossil resources", "abiotic depletion potential for fossil resources", "water (user) deprivation potential, deprivation-weighted water consumption", "potential comparative toxic unit for ecosystems", "potential comparative toxic unit for humans – cancerogenic", "Potential comparative toxic unit for humans – not cancerogenic", "potential soil quality index". The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high as there is limited experience with the indicator. This EPD was created using a software tool. ## References #### EN 17352 EN 17352:2022 Power operated pedestrian entrance control equipment - Safety in use - Requirements ## EN 50581 EN 50581:2013-02 Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances #### EN 60335-2 EN 60335-2-103: 2016-05 Household and similar electrical appliances #### **ECHA** **European Chemical Agency** #### ISO 9001 ISO 9001: 2015-09 Quality management systems requirements ## **ISO 12100** ISO 12100: 2010 Safety of machinery #### ISO 13849-1 ISO 13849-1: 2016-06 Safety of machinery ## ISO 13849-2 ISO 13849-2: 2013-02 Safety of machinery ## Machinery Directive 2006/42/EC Directive 2006/42/EC of the European Parliament and of the council of 17 May 2006 on machinery, and amending Directive 95/16/EC #### REACH Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) #### **RoHS** 2011/65/EU, Directive on the restriction of the use of certain hazardous substances in electrical and electronic equipment ## **Further References** ## EN 15804 EN 15804+A2:2019+AC:2021, Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products ## **IBU 2021** General Instructions for the EPD programme of Institut Bauen und Umwelt e.V. Version 2.0, Berlin: Institut Bauen und Umwelt e.V., 2021. www.ibu-epd.com ## ISO 14025 ISO 14025:2011-10, Environmental labels and declarations — Type III environmental declarations — Principles and procedures ## GaBi Sphera Solutions GmbH Gabi Software System and Database for Life Cycle Engineering 19922020 Version 40.0.0.74 Version 10.0.0.71 University of Stuttgart Leinfelden-Echterdingen #### GaBi ts documentation GaBi life cycle inventory data documentation (https://www.gabisoftware.com/support/gabi/gabidatabase-2020-lcidocumentation/). ## LCA-tool dormakaba Tool No.: IBU-DOR-202109-LT1-EN. Developed by Sphera Solutions GmbH ## **PCR Part A** PCR – Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Project Re-port according to EN 15804+A2:2019, Version 1.0, 2020, Institut Bauen und Umwelt e.V., www.ibu-epd.com. ## **PCR Part B** PCR – Part B: Requirements on the EPD for Electronic and physical Access Control Systems, version 08/2021, Institut Bauen und Umwelt e.V., www.ibu-epd.com. #### **Publisher** Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com ## Programme holder Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com ## **Author of the Life Cycle Assessment** dormakaba International Holding GmbH DORMA Platz 1 58256 Ennepetal Germany +49 2333 793-0 info.de@dormakaba.com www.dormakaba.com ## **Owner of the Declaration** dormakaba International Holding GmbH DORMA Platz 1 58256 Ennepetal Germany +49 2333 793-0 info.de@dormakaba.com www.dormakaba.com