ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804+A2

Owner of the Declaration dormakaba International Holding GmbH

Publisher Institut Bauen und Umwelt e.V. (IBU)

Programme holder Institut Bauen und Umwelt e.V. (IBU)

Declaration number EPD-DOR-20210194-CBC7-EN

Issue date 01.10.2021 Valid to 30.09.2026

Serrated Double Cylinder - pextra Q, pextra+, pextra, AP 2000 dormakaba

www.ibu-epd.com | https://epd-online.com

General Information Serrated Double Cylinder - pextra Q, pextra+, dormakaba pextra, AP 2000 Programme holder Owner of the declaration IBU - Institut Bauen und Umwelt e.V. dormakaba International Holding GmbH DORMA Platz 1 Hegelplatz 1 10117 Berlin 58256 Ennepetal Germany Germany **Declaration number** Declared product / declared unit EPD-DOR-20210194-CBC7-EN 1 piece of the product: one (1) dormakaba pextra Q mechanical key system, consisting of the following items: - one (1) pextra Q double cylinder - three (3) pextra Q serrated keys - one (1) cylinder mounting screw - one (1) security card - one (1) user manual - packaging This declaration is based on the product category rules: Scope: Building Hardware products, 01.08.2021 This declaration is a specific product declaration for the pextra Q double (PCR checked and approved by the SVR) cylinder including three keys. This Environmental Product Declaration is also representative for the systems pextra+, pextra and AP 2000. The underlying life cycle assessment is based on the entire life cycle of this Issue date specific mechanical key system. Data represents the year 2021. The products are manufactured at the dormakaba production facilities in 01.10.2021 Herzogenburg, Austria. The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer Valid to information, life cycle assessment data and evidences. 30.09.2026 The EPD was created according to the specifications of EN 15804+A2. In the following, the standard will be simplified as EN 15804. Verification The standard EN 15804 serves as the core PCR Independent verification of the declaration and data according to ISO 14025:2011 X internally externally Dipl.-Ing. Hans Peters (Chairman of Institut Bauen und Umwelt e.V.)

Florian Pronold

(Managing Director Institut Bauen und Umwelt e.V.)

Dr.-Ing. Wolfram Trinius,

(Independent verifier)

Product

Product description/Product definition Information about the enterprise

dormakaba stands for a broad offering of products, solutions and services for smart and secure access to buildings and rooms from a single source.

Product description/ Product definition

pextra Q, pextra+, pextra and AP2000 are serrated master key systems representing the high-quality segment.

Furthermore, pextra Q and pextra+ are patented and offer legal protection against commercial imitation. Duplicate keys are only made by dormakaba itself or by authorized partners and require identification by means of a security card.

The main production site of dormakaba serrated key systems cylinders/keys and parts is in Herzogenburg, Austria. Finished cylinders and keys are manufactured either directly in the factory or by authorised dealers. The product range consists of factory-made profiles and dealer profiles.

Whilst cylinders and keys with factory made profiles are manufactured in our factory, keys with dealer profiles can also be finalized directly with authorised dealers.

For placing the mechanical key systems on the market in the European Union/European Free Trade Association (EU/EFTA, with the exception of Switzerland) the following legal provisions apply:

All systems are classified according to the European locking cylinder standards *EN1303* and *DIN18252*. While the basic cylinder configuration already fulfils the attack resistance class C, the highest protection grade D can be achieved with an additional steel reinforcemnt bar or a scarificial breaking slot.

Gebrouchs- klasse onegory of use	Dauerhaftig- keit dusbility	Türmosse deer mess	Feuerwider- stand fire resistance	Betriebs- sicherheit sofery	Korrosionsbest. + Temperatur corosion residence and temperature	Verschluss- sicherheit key related security	Angriffs- widerstand attack recitance
1	6	0	В	0	С	6	0/B/C/D

*locking security 5 for 5-pin, 6 for 6- and 7-pin

dormakaba mechanical cylinders fulfill the material requirements given within the Directive *RoHS 2011/65/EU*. In addition, cylinders are fire protection tested according to *EN 1634-1* and *EN 1634-2*.

One speciality about the serrated key systems is that a high degree of components can be used throughout different systems, an example would be the cylinder housing itself or the pins.

This helps to reduce stock and increases the efficiency when it comes to transportation and production.

Application

The dormakaba serrated cylinder range with pextra Q, pextra+, pextra and AP2000 can be used in both residential as well as in the commercial segment in small and simple as well as in large and complex applications, thanks to its versatility. Nearly

limitless application options are possible.

Technical Data

pextra Q, pextra+, pextra and AP2000 are a high-performance locking systems, which fulfills even the most challenging requirements. They offer exceptional security thanks to:

- · Five to seven pins with additional side elements
- Wide range of different key profiles
- · Cylinder bodies are made of brass
- Keys are made of nickel silver

Furthermore for pextra Q and pextra+:

- Key protected by the patented single or double branch groove
- Technical protection of the patent with an optional active pin in the cylinder

Delivery status:

One (1) serial standard double cylinder includes three (3) keys, a mounting-screw, a user-manual and a security card. Including the packaging the cylinder will be supplied with a weight of 0,264 kg.

Base materials/Ancillary materials

The material composition of the product is the following:

Name	Value	Unit
Brass	70	%
Steel	7	%
Nickel Silver	22	%
Plastic	1	%

These figures are also representative for the serrated systems pextra and AP2000.

The cylinders and keys contain partial articles which contain substances listed in the Candidate List of *REACH Regulation* 1907/2006/EC (date: 19.01.2021) exceeding 0.1 percentage by mass: yes

 Lead (Pb): 7439-92-1 (CAS-No.) is included in some of the alloys used. The concentration of lead in each individual alloy does not exceed 4.0% (by mass).

The candidate list can be found on the /ECHA/ website address:

https://echa.europa.eu/de/home.

Reference service life

The life cycle of a lock cylinder is about 10-15 years, depending on the application and frequency of use. The cylinders are tested to 100,000 locking cycles minimum (*EN1303*). This corresponds to approximately 15-18 locking cycles per day for 15 years.

LCA: Calculation rules

Declared Unit

The declared unit is 1 piece of the product: pextra Q

Declared unit

Name	Value	Unit
Declared unit	1	piece/product
Mass of declared product including packaging	0.264	kg

System boundary

The type of EPD is according to EN 15804: "cradle to gate with options, modules C1–C4, and module D". The following modules are declared: A1-A3, C1-C4, D and additional modules: A4 + A5 **Production - Module A1-A3** The product stage includes:

- A1, raw material extraction, processing and mechanical treatments, processing of secondary material input (e.g. recycling processes),
- A2, transport to the manufacturer,
- A3, manufacturing and assembly including provision of all materials, products and energy, as well as waste processing up to the end-of waste state.

Construction stage - Modules A4-A5

The construction process stage includes:

- A4, transport to the building site;
- A5, installation into the building; including provision of all materials, products and energy, as well as waste processing up to the end-ofwaste state or disposal of final residues during the construction process stage.

End-of-life stage- Modules C1-C4 and D

The end-of-life stage includes:

- C1, de-construction, demolition:
- C2, transport to waste processing;
- C3, waste processing for reuse, recovery and/or recycling;
- C4, disposal; including provision and all transport, provision of all materials, products and related energy and water use. Module D (Benefits and loads beyond the system boundary) includes:
- D, recycling potentials, expressed as net impacts and benefits.

Geographic Representativeness

Land or region, in which the declared product system is manufactured, used or handled at the end of the product's lifespan: Austria

Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to *EN 15804* and the building context, respectively the product-specific characteristics of performance, are taken into account. Background database: *GaBi ts software*, *SP40*.

LCA: Scenarios and additional technical information

Characteristic product properties of biogenic carbon Information on describing the biogenic Carbon Content at factory gate

Name	Value	Unit
Biogenic carbon content in accompanying	0.01	kg
packaging	0.01	С

The following technical scenario information is required for the declared modules.

Transport to the building site (A4)

Name	Value	Unit
Litres of fuel (per piece)	0.0015	l/100km
Transport distance plane	124	km
Transport distance truck	812	km
Capacity utilisation (including empty runs) average	51	%

The product is transported via plane and truck. The main distribution regions are Europe and Asia. In order to allow scaling to a specific point of installation 100 km are declared as well.

Installation into the building (A5)

Name		Value	Unit
Waste pack	aging (paper)	0,031	kg
wasie pack	aging (paper)	0,031	

In case a **reference service life** according to applicable ISO standards is declared then the assumptions and in-use conditions underlying the determined RSL shall be declared. In addition, it shall be stated that the RSL applies to the reference conditions only.

The same holds for a service life declared by the manufacturer. Corresponding information related to in-use conditions needs not be provided if a service life taken from the list of service life by *BNB* is declared.

End of life (C1-C4)

C1: The product dismantling from the building is done manually without environmental burden.

Name	Value	Unit
Collected separately waste type	0.233	kg
Recycling	0.224	kg
Energy recovery	0.00948	kg

The product is disassembled in a recycling process. Material recycling is then assumed for the metals. The plastic components are assumed to be incinerated with energy recovery.

Reuse, recovery and/or recycling potentials (D), relevant scenario information

Collection rate is 100%.

LCA: Results

DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; MND = MODULE OR INDICATOR NOT DECLARED; MNR = MODULE NOT RELEVANT)

Pro	Product stage			ruction s stage		Use stage						E	End of li	ife stage	Э	Benefits and loads beyond the system boundaries
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
X	Х	Х	Х	Х	MND	MND	MNR	MNR	MNR	MND	MND	Х	Х	Х	Х	Х

RESULTS OF THE LCA - ENVIRONMENTAL IMPACT according to EN 15804+A2: 1 piece, Serrated double cylinder - pextra Q, pextra+, pextra, AP 2000

pexiia, pexiia, Ai 2000									
Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
GWP-total	kg CO ₂ eq	6.91E-01	1.21E-01	4.4E-02	0	1E-03	2.4E-02	0	-2.14E-01
GWP-fossil	kg CO ₂ eq	6.82E-01	1.18E-01	1E-03	0	9.75E-04	2.4E-02	0	-2.14E-01
GWP-biogenic	kg CO ₂ eq	7.47E-03	2E-03	4.3E-02	0	4.51E-05	5.61E-07	0	8.87E-04
GWP-luluc	kg CO ₂ eq	1.27E-03	2.61E-06	7.23E-07	0	2.32E-08	1.36E-06	0	-4.67E-04
ODP	kg CFC11 eq	3.49E-13	1.01E-17	7.92E-18	0	1.03E-19	1.22E-17	0	-1.07E-15
AP	mol H ⁺ eq	6.37E-03	3.39E-04	1.23E-05	0	9.76E-07	4.29E-06	0	-3E-03
EP-freshwater	kg P eq	2.26E-06	2.17E-08	1.55E-09	0	2.09E-10	1.94E-09	0	-1.75E-07
EP-marine	kg N eq	4.87E-04	1.45E-04	4.44E-06	0	3.11E-07	9.67E-07	0	-1.76E-04
EP-terrestrial	mol N eq	5.09E-03	2E-03	5.54E-05	0	3.45E-06	1.95E-05	0	-2E-03
POCP	kg NMVOC eq	1.29E-03	4.17E-04	1.18E-05	0	8.78E-07	2.68E-06	0	-6.52E-04
ADPE	kg Sb eq	2.46E-04	3.43E-09	1.25E-10	0	2.92E-11	1.67E-10	0	-1.34E-04
ADPF	MJ	8.62E+00	1.63E+00	1.4E-02	0	1.4E-02	1.1E-02	0	-2.29E+00
WDP	m ³ world eq deprived	2.43E-01	2E-04	5E-03	0	1.91E-06	2E-03	0	-1.31E-01

GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential; POCP = Formation potential of tropospheric ozone photochemical oxidants; ADPE = Abiotic depletion potential for non-fossil resources; ADPF = Abiotic depletion potential for fossil resources; WDP = Water (user) deprivation potential)

RESULTS OF THE LCA - INDICATORS TO DESCRIBE RESOURCE USE according to EN 15804+A2: 1 piece, Serrated double cylinder - pextra Q, pextra+, pextra, AP 2000

of initial postura at postura.									
Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
PERE	MJ	4.06E+00	4E-03	3.75E-01	ND	4.36E-05	3E-03	0	-3.93E-01
PERM	MJ	3.72E-01	0	-3.72E-01	ND	0	0	0	0
PERT	MJ	4.44E+00	4E-03	3E-03	ND	4.36E-05	3E-03	0	-3.93E-01
PENRE	MJ	8.48E+00	1.64E+00	1.4E-02	ND	1.4E-02	1.62E-01	0	-2.29E+00
PENRM	MJ	1.51E-01	0	0	ND	0	-1.51E-01	0	0
PENRT	MJ	8.63E+00	1.64E+00	1.4E-02	ND	1.4E-02	1.1E-02	0	-2.29E+00
SM	kg	1.81E-01	0	0	ND	0	0	0	0
RSF	MJ	0	0	0	ND	0	0	0	0
NRSF	MJ	0	0	0	ND	0	0	0	0
FW	m ³	6E-03	8.27E-06	1.28E-04	ND	7.82E-08	5.9E-05	0	-2E-03

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources; used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

RESULTS OF THE LCA – WASTE CATEGORIES AND OUTPUT FLOWS according to EN 15804+A2: 1 piece. Serrated double cylinder - pextra Q. pextra+, pextra, AP 2000

picce, certaica double cylinaer - pextra &, pextra, pextra, pr. 2000											
Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D		
HWD	kg	3.62E-08	1.57E-10	2.05E-11	ND	1.34E-12	4.26E-11	0	-1.25E-08		
NHWD	kg	1.45E-01	1.66E-04	1E-03	ND	1.42E-06	3E-03	0	-7.4E-02		
RWD	kg	3.58E-04	1.51E-06	7.29E-07	ND	1.49E-08	4.15E-07	0	-2.56E-05		
CRU	kg	0	0	0	ND	0	0	0	0		
MFR	kg	0	0	0	ND	0	2.24E-01	0	0		
MER	kg	0	0	0	ND	0	0	0	0		
EEE	MJ	8.6E-02	0	6.6E-02	ND	0	0	0	0		
EET	MJ	1.56E-01	0	1.21E-01	ND	0	0	0	0		

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported thermal energy

RESULTS OF THE LCA – additional impact categories according to EN 15804+A2-optional: 1 piece, Serrated double cylinder - pextra Q, pextra+, pextra, AP 2000

Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
РМ	Disease incidence	5.1E-08	1.19E-09	6.82E-11	ND	5.13E-12	5.47E-11	0	-2.8E-08
IR	kBq U235 eq	4.41E-02	2.1E-04	1.13E-04	ND	2.12E-06	3.74E-05	0	-5E-03
ETP-fw	CTUe	5.57E+00	1.16E+00	7E-03	ND	1E-02	4E-03	0	-1.94E+00
HTP-c	CTUh	1.02E-09	2.18E-11	3.48E-13	ND	1.84E-13	3.63E-13	0	-1.5E-10
HTP-nc	CTUh	2.44E-08	1.07E-09	1.51E-11	ND	7.89E-12	3.68E-11	0	-1.2E-08
SQP	SQP	1.13E+01	4E-03	4E-03	ND	3.55E-05	3E-03	0	-2.08E+00

PM = Potential incidence of disease due to PM emissions; IR = Potential Human exposure efficiency relative to U235; ETP-fw = Potential comparative Toxic Unit for ecosystems; HTP-c = Potential comparative Toxic Unit for humans (cancerogenic); HTP-nc = Potential comparative Toxic Unit for humans (not cancerogenic); SQP = Potential soil quality index

Disclaimer 1 – for the indicator "Potential Human exposure efficiency relative to U235". This impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure or radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, radon and from some construction materials is also not measured by this indicator.

Disclaimer 2 – for the indicators "abiotic depletion potential for non-fossil resources", "abiotic depletion potential for fossil resources", "water (user) deprivation potential, deprivation-weighted water consumption", "potential comparative toxic unit for ecosystems", "potential comparative toxic unit for humans – cancerogenic", "Potential comparative toxic unit for humans – not cancerogenic", "potential soil quality index". The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high as there is limited experience with the indicator.

References

DIN 18252

DIN 18252: 2018, Profile cylinders for door locks – Terminology, dimensions, requirements, test methods and marking

DIN EN 1303

DIN EN 1303: 2015, Building Hardware - Cylinders for locks - Requirements and test methods

DIN EN 1634-1

DIN EN 1634-1:2018, Fire resistance and smoke control tests for door and shutter assemblies, openable windows and elements of building hardware

DIN EN 1634-2

DIN EN 1634-2:2009, Fire resistance and smoke control tests for door, shutter and openable window assemblies and elements of building hardware

DIN EN ISO 14025

DIN EN ISO 14025:2011, Environmental labels and declarations — Type III environmental declarations - Principles and procedures.

EN 15804

EN 15804:2019+A2, Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products.

REACH Regulation

REACH Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals.

RoHS 2011/65/EU

RoHS 2011/65/EU, Directive on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

European Chemicals Agency (ECHA)

https://echa.europa.eu/de/

Further References

IBU

Institut Bauen und Umwelt e.V.:

General Instructions for the EPD Programme of Institut Bauen und Umwelt e.V. Version 2.0., Berlin: Institut Bauen und Umwelt e.V., 2021.

www.ibu-epd.com

GaBi ts software

Sphera Solutions GmbH Gabi Software System and Database for Life Cycle Engineering 1992-2020 Version 10.0.0.71 University of Stuttgart Leinfelden-Echterdingen

GaBi ts documentation

GaBi life cycle inventory data documentation (https://www.gabi-software.com/support/gabi/gabidatabase- 2020-lci-documentation/).

LCA-tool dormakaba

LCA tool, version 1.0. Developed by Sphera Solutions GmbH

PCR Part A

PCR – Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Project Re-port according to EN 15804+A2:2019, Version 1.0, Institut Bauen und Umwelt e.V., www.ibu-epd.com.

PCR Part B

PCR – Part B: Requirements on the EPD for Building Hardware Products, version 08/2021, Institut Bauen und Umwelt e.V., www.ibu-epd.com.

Publisher

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com

Programme holder

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com

Author of the Life Cycle Assessment

Sphera Solutions GmbH Hauptstraße 111- 113 70771 Leinfelden-Echterdingen Germany +49 711 341817-0 info@sphera.com www.sphera.com

Owner of the Declaration

dormakaba International Holding GmbH DORMA Platz 1 58256 Ennepetal Germany +49 2333 793-0 info.de@dormakaba.com www.dormakaba.com